Programs and
Strategies

Guy McCusker
Logic and Interaction 2012

".'-'\.--");’; Avec les Nuls,

tout devient facile!

v Les strategies
v L'interaction

v La definabilite
v callcc
v L'Algol Idealisé

o ———

Guy McCusker

Alternative title

Game semantics for
programs

Game semantics models programs as
certain kinds of strategies on games.

Different sorts of programs give rise to
different sorts of strategies.

Properties of strategies give an abstract
characterization of computational behaviour.

The semantics game

\

Progly

Every program corresponds to a something

Game Semantics

\

Progly —— Strategies

Every program corresponds to a strategy

Definability

Strategies
/

Every program corresponds to a strategy

Programs

...and every (finite) strategy comes from a program

Game Semantics

® We will see how game semantics gives
models with definability for:

® pure functional programs
® imperative programs
® programs with control operators

® programs with higher-order store

Strategies and games

® Game semantics models a program as a
strategy for a game.

® Games define what moves are available.

® Constraints on strategies limit their
behaviour.

Constraints and effects

Constraining
strategies with:

means you don't get:

Innocence Store

Bracketing Control

Visibility Higher-order store

Definability

N

Every program corresponds to a strategy

...and every (finite) strategy comes from a program

...and behavioural properties of strategies classify programs

10

1. Pure functional
programs

Typed lambda calculus

® Terms: M :=x| Ax.M | MM
® Jypes: A:=Y |A—A

® Normal forms: Ax|x3...Xn . Xi MMs...M«

Normal forms as trees

}\x|xz Xn

/|\

AY1Y2...¥m Azi2>..Z

VNN

Normal forms as trees

AX1X2...Xn
N\
/ Xi"“\
AY1Y2...¥m AZ1Z2...Zn

A path in the tree

Root node
Choice of variable
Choice of argument

Choice of variable

The path as a picture

(Y—Y) — (Y—Y)) — (Y—Y)

AEAX. F (Ayv.F(Az.z)(.)) (...)

The path as a picture

(Y—Y) — (Y—Y)) — (Y—Y)

/F./ @ \FA\x
Ay @
F
Az ./.

./

(Games on arenas

® View the type as a tree: each = connects a
node to its parent.

® Describe a term in normal form by playing a
two-player game:

® Opponent interrogates the term by
choosing branches

® Player represents the term by choosing
head-variables

(Games on arenas

(Games on arenas

® At Opponent’s turn, he chooses a
descendent of Player’s last move.

(Games on arenas

® At Opponent’s turn, he chooses a
descendent of Player’s last move.

® At Player’s turn, he chooses a descendent
of any previous O-move

(Games on arenas

® At Opponent’s turn, he chooses a
descendent of Player’s last move.

® At Player’s turn, he chooses a descendent
of any previous O-move

® the justification pointer tells us which one

Strategies

® A strategy O is a set of even-length plays of
the game:

® non-empty and even-prefix-closed

® deterministic: sab, sac €0 = b=c.

® Set of plays = tree = (partial, infinite)
normal form.

Definability...

® A strategy O is total if it always has a
response:

s €0, sa legal = I sab e

® Finite, total strategies correspond to normal
forms.

20

... but not yet a model

® We can interpret every normal form as a
strategy.

® We do not yet have an interpretation of
arbitrary A-terms.

® \VWe want one! And we want it to be
compositional.

Problem: asymmetry

® These plays and strategies are asymmetric:

® Opponent always has to move directly
down the tree

® Player can backtrack.

® Felscher (1985) referred to these as E-
strategies.

Composition as
interaction?

® The natural way to compose strategies
would be by interaction.

® [he asymmetry means our strategies
cannot interact properly.

A failing interaction

((Y=Y) 2 (YY))

Mz f(f(2))

A failing interaction

(YY) 2(v2Y) = (YY)

Supply Af.Azf(f(z)) as argument to AFEAX.F(Ay.y)(x)

A failing interaction

(YY) 2(v2Y) = (YY)

Supply Af.Azf(f(z)) as argument to AFEAX.F(Ay.y)(x)

A failing interaction

(YY) 2(v2Y) = (YY)
/./‘/.

Supply Af.Azf(f(z)) as argument to AFEAX.F(Ay.y)(x)

A failing interaction

(YY) 2(v2Y) = (YY)

Y

ut Opponent doesn’t backtrack!
VRERre— T——————
Supply Af.Azf(f(z)) as argument to AFEAX.F(Ay.y)(x)

Restoring symmetry:
Inhocence

Restoring symmetry:
Inhocence

The solution to this asymmetry was
discovered by Hyland and Ong (Inf. Comp.

2000), and was also present in the work of
Coquand (JSL 1995).

The idea is:

® |et both players backtrack

Restoring symmetry:
Innocence

The solution to this asymmetry was

discovered by Hyland and Ong (Inf. Comp.
2000), and was also present i

Coquand (JSL 1995).
The idea is:

great! but now
plays don’t look like paths
in the term

® |et both players backtrack

Restoring symmetry:
Inhocence

® The solution to this asymmetry was
discovered by Hyland and Ong (Inf. Comp.

2000), and was also present in the work of
Coquand (JSL 1995).

® [heideais:

® |et both players backtrack

® recover definability by constraining the

Restoring symmetry:
Innocence

® The solution to this asymmetry was

discovered by Hyland and Ong (Inf. Comp.
2000), and was also present i

Coquand (JSL 1995).

® [heideais:

oh...so
from P’s point of view,
O isn’t backtracking!
smart!

® |et both players backtrack

® recover definability by constraining the

Arenas and plays

Arenas and plays

® An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

® (O /P alternate down the trees.

Arenas and plays

® An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

® (O /P alternate down the trees.

Arenas and plays

An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

O / P alternate down the trees.

A play is a sequence of moves-
with-pointers.

Pointer-chains are paths in the
arena.

Arenas and plays

An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

O / P alternate down the trees.

A play is a sequence of moves-
with-pointers.

Pointer-chains are paths in the
arena.

o@f\\

2 4 3

Views

® We want Player to behave as though O
were not backtracking.

® At any point in the play, we can erase
certain moves to give a P-view which
disguises backtracking:

oﬁf\\

2 4 3

Views

® We want Player to behave as though O
were not backtracking.

® At any point in the play, we can erase
certain moves to give a P-view which
disguises backtracking:

0‘“0‘/ \0

| 2 5

Innocent strategy

® An innocent strategy O on an arena is a set
of even-length plays such that:

® O is non-empty and closed under even-
prefix

® (O is deterministic

® if sabe(, te0, and view(sa) = view (ta)
then tabeC

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

Example: a non-

Innocent strategy

(Y—Y) — (Y—Y)) — (Y—Y)
O

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

O
./

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/‘/‘
O

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/‘/‘
O

o

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/0
o/

o

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/0
o/

o

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/‘/‘
O

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/‘/‘
O

o

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/0
o/

o

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/.

Example: a non-

Innocent strategy
(Y—Y) — (Y—Y)) — (Y—Y)

/.

We have a model
(YY) (YY)

(M Azf(f(2)))

We have a model
(YY) (YY)

(N Azf(f(2)))

W

/.

(AFAX.F
x.F(Ay.y)(x))
(MENZA(F
f(f(2)))

We have a model
(YY)
O

(AEAX.F(AY.y)(X)) (Af.Azf(f(z)))

We have a model
(YY)
O

AX.X

(AEAX.F(AY.y)(X)) (Af.Azf(f(z)))

Soundness

Fact [cf. Hyland-Ong 2000]

If M:A — B and N : A are normal forms, the
strategy obtained by

® allowing the strategies for M and N to interact
® hiding the play in A

is the total, innocent strategy corresponding to
the normal form of MN.

DR —— T

34

Soundness

® Proving soundness is hard work.

® We approach it by showing that innocent

strategies have the structure of a Cartesian
closed category.

® CCQGs are just what is needed to make a
sound model of the A-calculus.

A category

® We can build a category of arenas and
Innocent strategies:

Objects are arenas
Morphisms are innocent strategies
Composition is interaction plus hiding

|dentity is the copycat strategy

36

® We can build a category of arenas and
Innocent strategies:

A category

you

have to show that
this preserves

innocence!

Objects are arena
Morphisms are i
Composition’is interaction plus hiding

|dentity is the copycat strategy

36

A category

® We can build a category of arenas and
Innocent strategies:

Objects are arenas
Morphisms are innocent strategies
Composition is interaction plus hiding

|dentity is the copycat strategy

36

Copycat strategies

Copycat strategies
INE;

((Y=Y) 2 (YY)

Copycat strategies

Nf f (eta-expand ?

((Y=Y) 2 (YY)

Copycat strategies

M. Ax.fx
(YY) (YY)

Copycat strategies

Af. Ax.fx

((Y=Y) 2 (YY)
O

Copycat strategies

M. Ax.fx
(YY) (YY)

O
o

Copycat strategies

M. Ax.fx
(YY) (YY)

O
o

¢

Copycat strategies

M. Ax.fx
(YY) (YY)

./‘/./

Cartesian closure

Finally we show that the category has
products and exponentials:

Cartesian closure

Finally we show that the category has
products and exponentials:

AXDB

JANWAN

Cartesian closure

Finally we show that the category has
products and exponentials:

AXDB A=B

JANWAN B

Cartesian closure

Finally we show that the category has
products and exponentials:

AXDB A=B

ANV L

After proving that these behave properly, we
get soundness.

Full completeness

Full completeness

® Full completeness (definability) of the model
IS now easy:

Full completeness

® Full completeness (definability) of the model
IS now easy:

® an innocent strategy is determined by the
E-strategy it contains

Full completeness

® Full completeness (definability) of the model
IS now easy:

® an innocent strategy is determined by the
E-strategy it contains

® finite, total E-strategies correspond to
terms.

Literature note |:
abstract machines

The soundness of interaction of strategies as

a model of A-application means that it can be
used as a kind of abstract machine for
computation. See e.g.

Danos, Herbelin and Regnier, Games
Semantics and Abstract Machines, [996.

Curien and Herbelin, Computing with
Abstract Bohm Trees, 1 998.

Literature note 2:
innocence semantically

® VWe have presented innocence as a
syntactically-inspired condition.

® The work of Mellies on Asynchronous Games
shows that it can be recovered from
semantically-inspired considerations to do
with permutability of moves.

Mellies, Asynchronous Games 2:The True
Concurrency of Innocence, 2006.

2. Adding data and
recursion: PCF

PCF

® So far we have only considered logic rather than
programming.

® Plotkin’s language PCF is a prototypical functional
programming language.

® Typed A-calculus with base types for numeric and
boolean values.

® Constants for arithmetic and boolean operations.

® Recursion.

43

PCF

® fypes: A:=N|B|A A

® Terms: M:=x|AxM| MM
| n | succ | pred | true | false ...
| if-then-else | Y

® Ve will focus on PCF over the Booleans.

A Game for the
Booleans

® \We introduce an arena with data to model
the Booleans:

® Note: this is the same as the arena for the

type Y'Y Y which encodes Booleans in
the A-calculus.

if-then-else

B > B > B > B

@

@
®

® @

Exercise

® |n the A-calculus, write down the term
corresponding to if-then-else, when

Booleans are encoded using Y—2Y—Y
® true is AX.Ay.x, false is Ax.Ay.y
® if-then-else (over Booleans) is...!

® Compare the corresponding strategy to
the one just indicated.

Recursion

Strategies are sets of plays.

Directed unions of innocent strategies are
innocent strategies, and composition
preserves them.

We can therefore define least fixed points,
which lets us interpret recursion in the usual
way.

Of course, we abandon totality.

48

Definability for PCF?

® The CCC of arenas and innocent strategies
therefore contains a model of PCF.

® Does it have the definability property!?

® |s there a class of “normal form” PCF terms
that correspond to the finite innocent
strategies!?

Normal Forms

® What might a normal form look like?

® Something like this:

AX|X%2...Xn. if Xi M|...Mkthen N else N>

® Does every strategy behave like this!?

Early exits

Consider a strategy which plays as shown below:
(B—-B)—B

®®
@
®

This does not correspond to any PCF-definable
term.

Bracketing condition

Our normal forms

AXX%3...Xn. if Xi M|...Mkthen N else N>

and in fact all PCF terms, satisfy a bracketing
condition:

no question g is answered until all
questions asked after g have been

answered

IR rmm——— —

Bracketing condition

® Add a label to moves in arenas: every move
is a question or an answer. In a play, an
answer move answers the question it points

to.

® A play s satisfies P-bracketing if and only if:

for all prefixes ta of s, where a is a P-answer,
a answers the last unanswered question in
view(t).

53

Formalities

® An innocent strategy O is well-bracketed if
every play seO is well-bracketed.

® Composition of well-bracketed strategies
yields a well-bracketed strategy.

® The category of arenas and well-bracketed

innocent strategies is a CCC; it contains
our model of PCF.

Definability for PCF

Theorem [Hyland-Ong 2000]

Every finite, innocent, well-
bracketed strategy corresponds
to a term of PCF

R r——— ———
“Finite” means “finite as an E-strategy’, i.e.
containing a finite number of distinct views.

The proof is a direct extension of the one
for A-calculus.

Definability for PCF

Innocent,
well-bracketed

strategiey

PCF ———
programs P A——

3. Control

Bracketing vs Control

® The bracketing condition restricts functions
to a stack discipline for calls and returns.

® |n programming terms, this means the
absence of control operators.

® Can we make that correspondence precise?

58

Add a control operator

® Add your favourite control operator to PCF.
For example, add an empty type L and a

constant
callcc: (B—L)—B)—B

® How do we model this!?

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

60

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

@

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

o @

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B - 1) » B) > B
o (@
O,

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B - 1) - B) & B
@
@

®
®

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

o @

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

o @

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

o @

@

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

o @

@
®

callcc

Interpreting L as the one-move arena, we
model callcc with the following strategy:

(B » 1) » B) > B

o @

®
© ®

Definability

This gives us a model of PCF + callcc, with a
definability property.

Theorem [Laird 1997]

Every finite, innocent, (not
necessarily well-bracketed)

strategy corresponds to a term of
PCF + callcc.

R e—— —— T ———

Definability for PCF
+callcc

Innocent

strategies/

PCF+callcc
programs

Games and linear
continuations

® This result demonstrates that the games
model is a continuations-based model,
slightly disguised.

® |aird (2005) shows that the well-bracketed
strategies are exactly those obeying a
certain linear continuation passing regime:

® answers are continuations that can be
invoked at most once.

4. Beyond innocence:
state

Non-innocent
strategies

® Strategies without the innocence constraint
form another CCC.

® Our analysis so far has exploited a tight
correspondence between views and paths in
syntax trees.

® |f we abandon innocence, what do we get!?

Non-inhocence

(Y—Y) — (Y—Y)) — (Y—Y)
AFAX.

Non-inhocence

(Y—Y) — (Y—Y)) — (Y—Y)
@ \F)\x.

Non-inhocence

(Y—Y) — (Y—Y)) — (Y—Y)

@ \FAx.
F./ X

Non-inhocence

(Y—Y) — (Y—Y)) — (Y—Y)

@ \FAx.
./ X

F

Ay ./

Ay.

Non-inhocence

(Y—Y) — (Y—Y)) — (Y—Y)

@ \FAx.
./ X

F

Ay ./

Non-inhocence

(Y—Y) — (Y—Y)) — (Y—Y)

@ \FAx.
- / X

Non-inhocence

(Y—Y) — (Y—Y)) — (Y—Y)

@ A\FAx.
- / X

Changing minds

® How can a program change its responses
like this?

® Using state!

Changing minds

® How can a program change its responses
like this?

® Using state!

AFAx.new v:= true in

F(Ay. if v then v:=false; return y
else F(...))

Stateful strategies

® Non-innocent strategies directly represent
stateful computation.

® The state itself is implicit: what we see in
the strategy is the behaviour implemented

by using the state.

® Contrast with explicit-state models, e.g.
those based on a state monad.

Stateful strategies

® Non-innocent strategies directly represent
stateful computation.

® The state itself is implicit: what we see in
the strategy is the behaviour implemented

by using the state.

this idea was first
® Contrast with explicit-sta explored by Uday Reddy

those based on a state m (1993)

69

ldealised Algol

® Reynolds’s Idealised Algol is a prototypical
higher-order imperative programming
language

|A = PCF + assignable
variables + block
structure

|dealised Algol

® Reynolds’s Idealised Algol is a prototypical
higher-order imperative programming
language

|A = simple while
programs + block
structure + A-calculus

ldealised Algol

® Jypes: A:=comm |exp|var|A—A
® Terms: M:=PCF|x=M]|!x|M;M

| new xin M

Commands and
variables

® Jo interpret commands and variables, we
can no longer rely on the analogy with
normal-form trees.

® \We have to do some semantics!

® (Consider the observable actions available
for each type, and build an appropriate
arena.

Commands

Commands

® With no explicit store, what can we
observe of a command!?

Commands

® With no explicit store, what can we
observe of a command!?

® We can try to run it:“run”

73

Commands

® With no explicit store, what can we
observe of a command!?

® We can try to run it:“run”

©

73

Commands

® With no explicit store, what can we
observe of a command!?

® We can try to run it:“run”

® Ve will notice when it terminates:
“done’’.

©

73

Commands

® With no explicit store, what can we
observe of a command!?

® We can try to run it:“run”

® Ve will notice when it terminates:
“done’’.

©
@

73

Commands

® With no explicit store, what can we
observe of a command!?

® We can try to run it:“run”

® Ve will notice when it terminates:
“done’’.

® [hat’s all.

©
@

73

Sequential composition

comm — comm — comm

I

r
d

Variables

® Variables are more complex:

® we can try to read a value, and get
something back

® we can try to store a value; this is like a
command, so we just observe
termination.

75

write(true)

Variables

ok

write(false)

read

ok

A

true false

Assignment

var — exp — comm

r
g

a
write(a)

ok

Example

x:var, y:var F x:=not (ly) :comm

Example

x:var, y:var F x:=not (ly) :comm

I

Example

x:var, y:var F x:=not (ly) :comm

r
read

Example

x:var, y:var F x:=not (ly) :comm

r
read

b

Example

x:var, y:var F x:=not (ly) :comm

r
read

b
write(not b)

Example

x:var, y:var F x:=not (ly) :comm

r
read

b
write(not b)

ok

Example

x:var, y:var F x:=not (ly) :comm

r
read

b
write(not b)

ok

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm
r

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok

read

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r
ok
r
d
read

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok
doesn’t have to be
“true”

read

79

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok
doesn’t have to be
“true”

read

b
write(not b)

79

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok
doesn’t have to be
“true”

read

b
write(not b)

ok

79

Another example

c:comm, X:var = X:=true; ¢; X := not(!x) : comm

write(true) r

ok
doesn’t have to be

r “true”
d
read
b
write(not b)
ok

79

Bad variable behaviour

Bad variable behaviour

® Why don’t we try to restrict plays so that
the b in the previous example is always
“true’!

Bad variable behaviour

® Why don’t we try to restrict plays so that
the b in the previous example is always
“true’!

® The command c could later become bound
to something that alters x, so it is vital to
allow the read to return any value.

L ocal variable
behaviour

® |f we wrap the term in a variable allocation
new X in X:=true; ¢; X := not(!x)
it is no longer possible for ¢ to alter x.
® The variable x becomes a good variable.

® |t also becomes hidden: the environment
should not know it is there.

Variable allocation

® The command new x in M is just like M, but:

® x is bound to a storage cell, so M’s
interactions with x should be variable-
like.

® the outside world should no longer see x.

® How can we model this? Interaction plus
hiding!

A cell strategy

(var @ comm) — comm

I
I

A cell strategy

(var @ comm) — comm

I

any “good”’ sequence of
reads and writes

83

Allocation in action

(var = comm) — comm
r

r
write(true)

ok

read
true

write(false)

ok

Allocation in action

(var = comm) — comm
r

r
write(true)

ok

answering “true”
here requires non-
Innocence

read
true

write(false)

ok

84

Allocation in action

comm — (var = comm)

r
write(true)
ok
r
d
read
true

write(false)

ok

Allocation in action

comm — (var — comm)—’ comm

r
r
write(true)
ok
r
d
read
true

write(false)

ok

Allocation in action

comm — comm
I

1

Allocation in action

comm — comm
I

r
d

Allocation in action

comm — comm
I

The internal interaction went as expected,
and now it is invisible.

A remark

® |n this model, only variable allocation
requires a non-innocent strategy: terms
without new x in ... are interpreted
innocently.

® This is a marked difference from explicit
state models, where assignment and lookup
operations access the state.

87

Definability?

® We have a model of ldealised Algol, and we
can prove that it is sound.

® Does it have the definability property!?

Visibility

® Our non-innocent strategies are very
powerful. E.g.:
(A = (A @ comm) 2comm) — comm
r

Visibility

® Our non-innocent strategies are very
powerful. E.g.:
(A = (A @ comm) 2comm) — comm

r~/>I"

Visibility

® Our non-innocent strategies are very
powerful. E.g.:
(A = (A @ comm) 2comm) — comm

/r/r
IY

Visibility

® Our non-innocent strategies are very
powerful. E.g.:
(A = (A @ comm) 2comm) — comm
/r/r
d

Visibility
® Our non-innocent strategies are very

powerful. E.g.:
(A = (A @ comm) 2comm) — comm

/ =
;
d

g

Visibility

® Our non-innocent strategies are very
powerful. E.g.:
(A = (A @ comm) 2comm) — comm

//z/r/r

g

g

Visibility

® Our non-innocent strategies are very
powerful. E.g.:
(A = (A @ comm) 2comm) — comm

//z/r/r

g
® No ldealised Algol program has this

behaviour.

g

Visibility

® Our non-innocent strategies are very
powerful. E.g.:

® No ldealised Algol program has this
behaviour.

Visibility

® TJo eliminate this strategy, we impose a new
constraint: visibility.

® A play s satisfies P-visibility if, for every prefix
tm where m is a P-move, the justifier of m
is in view(t).

® (All plays in innocent strategies satisfy this
automatically.)

Visibility

(A = (A @ comm) 2comm) = comm

//z/r/r

g

g

Visibility

(A = (A @ comm) 2comm) = comm

o

g

g

Visibility

(A = (A @ comm) 2comm) = comm

o

g

g

Eliminating such plays lets us recover definability.
But how to prove it!

Proving definability

® We cannot directly use the same approach
as in the innocent case: strategies no longer
correspond to A-terms.

® We can reduce the problem to the innocent
case.

92

Factorization

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible
strategy on A = comm is of the
form O ; cell for some innocent O :

A — (var 2 comm).
RERe—— —

Factorization

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible |
strategy on A = comm is of the
form O ; cell for some innocent O :

A — (var 2 comm).
R e— -

Proof: innocently
simulate the non-innocent
strategy by storing the

history in the cell.

93

Factorization

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible
strategy on A = comm is of the
form O ; cell for some innocent O :

A — (var 2 comm).
® Definability for innocent strategies works as
usual.

Factorization

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible
strategy on A = comm is of the
form O ; cell for some innocent O :

A — (var 2 comm).
RERee—— ———
® Definability for innocent strategies works as
usual.

® [f Mis a term defining O, then new x in M defines
O ; cell.

93

Another definability

result

Theorem [Abramsky + M 1996]
Every finite, well-bracketed, P-
visible strategy on A = comm is
definable by a term of Idealised

Algol.
RRERre—— - T

Definability for
|dealised Algol

A
programs

Well-bracketed,

visible strategij

Another definability
result?

Probably a theorem that | don’t
think anyone has actually
bothered to prove

Every finite (not necessarily well-
bracketed) P-visible strategy on A —

comm is definable by a term of Idealised

Algol + callcc.
R —— T ————

5. Beyond visibility: more
state

VVhat can general
strategies express!

® | am afraid | can no longer pretend to make

the progression seem logical: I'll just have to
tell you.

® Strategies that may break visibility

correspond exactly to programs with higher
order store.

Ground vs higher order
store

® Because ground-type data can be
completely evaluated, assighment was easy

to interpret.
var — exp — comm

r
g

a
write(a)

ok

Ground vs higher order
store

® Because ground-type data can be
completely evaluated, assighment was easy

to interpret.
var — exp — comm

I

N
wrlte(a) ------------- --: fully evaluate the exp
before assigning

ok

d

Ground vs higher order
store

® How could we do this for a general type A?

var[A] @ A = comm

I

Ground vs higher order
store

® How could we do this for a general type A?

var[A] @ A = comm

I

§~(
this is a2 non-final O-
move; what on earth

should we do now?

What is var[A] anyway!

® How can we store a program of type A in a
variable!?

® VWe can hardly have a move
write(O)

where O is a strategy.

var take two

® An alternate var type, for ground data, is
given by

exp X (exp — comm)
® Think of this as the product of

® the “read method”, returning an exp

® the “write method”, taking an exp and
returning the assignment command

Definability again

® This gives another way to interpret ldealised
Algol, and we can obtain another definability
result.

® Perhaps this version of var will generalise to
arbitrary types? Define

var[A] =A X (A = comm).

Assignment and lookup

® The type for the assighment constant is now
(A X (A = comm)) = A = comm
® Now it’'s easy to interpret, using projection.

® | ookup is similarly simple: just use the other
projection

(AX (A = comm)) = A

A cell strategy?

® How can we implement a cell strategy of
type

(var[A] @ comm) — comm !
r
r

A cell strategy?

® How can we implement a cell strategy of
type

(var[A] @ comm) — comm !
r

ﬁatis a “good”

sequence in this game?

I

cells

(A X (A =@ comm) = comm) — comm

cells

(A X (A =@ comm) = comm) — comm
r

cells

(A X (A =@ comm) = comm) — comm

I
I

cells

(A X (A =@ comm) = comm) — comm

I
I

cells

(A X (A =@ comm) = comm) — comm

I
I

=

cells

(A X (A =@ comm) = comm) — comm

I
I

=

cells

(A X (A =@ comm) = comm) — comm

I
I

O =5 O

cells

(A X (A @ comm) = comm) — comm

I
I

S QS O S

cells

(A X (A =@ comm) = comm) — comm

I
I

O =5 O 5 O 5

cells

(A X (A =@ comm) = comm) — comm

I
md i

O =5 O 5 O 5

cells

(A X (A =@ comm) = comm) — comm

I
> I

cells

(A X (A =@ comm) = comm) — comm

I
sl §

P
| P breaks visibility
a /S T here.

106

Factorization again

Theorem (approx)

[Abramsky, Honda,M 1998]

Every finite well-bracketed strategy on a
type A = comm is of the form O ; cell
for some P-visible

O :A = (var[comm]" = comm).

Factorization again

Theorem (approx)

[Abramsky, Honda,M 1998]

Every finite well-bracketed strategy on a
type A = comm is of the form O ; cell
for some P-visible

O :A — (var[com
PSR —

Proof: turn
all the violations of P-
visibility into violations of
O-visibility performed by
the cell.

Factorization again

Theorem (approx)

[Abramsky, Honda,M 1998]

Every finite well-bracketed strategy on a
type A = comm is of the form O ; cell
for some P-visible

O :A = (var[comm]" = comm).

Factorization again

Theorem (approx)

[Abramsky, Honda,M 1998]

Every finite well-bracketed strategy on a

type A = comm is of the form O ; cell

for some P-visible

O :A = (var[comm]" = comm).
This means that arbitrary well-bracketed
strategies can be expressed as a composition
of cells storing comm and boolean types.

Definability again

® Our cell strategies allow us to interpret a
language where terms of any type can be
stored in the variables.

® The factorization result means that we have
a definability result once more: every finite
strategy is the denotation of some term in
this language.

108

Literature note 3:

® |aird has shown how the ideas at play here
can be expressed algebraically, in terms of
his sequoidal categories.

® laird, A Categorical Semantics of Higher-Order
Store, CTCS 2002.

Definability for Higher-
Order Store

Programs
with ho-
store

Well-bracketed

strategies/

Closing remarks

Conditions classify
programs

A-calculus < > finite, total, innocent

PCF < > innocent, P-bracketed
PCF+callcc < > innocent

|dealised Algol < > P-bracketed, P-visible

Higher-type Store < > P-bracketed

112

O is unconstrained

® Qur behavioural constraints have all been
expressed as conditions on strategies.

® O is free to behave as he wishes.

® This means it makes sense to allow, e.g., a
PCF term to interact in an |A context.

113

Full abstraction

In each case, we can lift our full completeness
(definability) result to a full abstraction result
by means of a quotient:

O~=T:A if and only if for all 6X:A—comm,
O,X=T,X.

In the case of the imperative languages, this
quotient can be defined directly.

Fin

