
Programs and
Strategies

Guy McCusker
Logic and Interaction 2012

1

Alternative title
2

Game semantics for
programs

• Game semantics models programs as
certain kinds of strategies on games.

• Different sorts of programs give rise to
different sorts of strategies.

• Properties of strategies give an abstract
characterization of computational behaviour.

3

The semantics game

Programs Something else

Every program corresponds to a something

4

Game Semantics

Programs Strategies

Every program corresponds to a strategy

5

Definability

Programs Strategies

Every program corresponds to a strategy

... and every (finite) strategy comes from a program

6

Game Semantics

• We will see how game semantics gives
models with definability for:

• pure functional programs

• imperative programs

• programs with control operators

• programs with higher-order store

7

Strategies and games

• Game semantics models a program as a
strategy for a game.

• Games define what moves are available.

• Constraints on strategies limit their
behaviour.

8

Constraints and effects

Constraining
strategies with: means you don’t get:

Innocence Store

Bracketing Control

Visibility Higher-order store

9

Definability

Every program corresponds to a strategy

... and every (finite) strategy comes from a program

... and behavioural properties of strategies classify programs

10

1. Pure functional
programs

11

Typed lambda calculus

• Terms: M ::= x | λx.M | MM

• Types: A ::= γ | A→A

• Normal forms: λx1x2...xn . xi M1M2...Mk

12

Normal forms as trees
λx1x2...xn

xi

λy1y2...ym λz1z2...zn

xkyj

...

13

Normal forms as trees
λx1x2...xn

xi

λy1y2...ym λz1z2...zn

xkyj

...

13

 A path in the tree

• Root node

• Choice of variable

• Choice of argument

• Choice of variable

• ...

14

The path as a picture
((γ γ) (γ γ)) (γ γ)

λF.λx F λy F λz z((.). (..)) (...).

15

The path as a picture
((γ γ) (γ γ)) (γ γ)

λF.λx
F

λy

F

λz

z

16

Games on arenas

• View the type as a tree: each → connects a
node to its parent.

• Describe a term in normal form by playing a
two-player game:

• Opponent interrogates the term by
choosing branches

• Player represents the term by choosing
head-variables

17

Games on arenas

18

Games on arenas

• At Opponent’s turn, he chooses a
descendent of Player’s last move.

18

Games on arenas

• At Opponent’s turn, he chooses a
descendent of Player’s last move.

• At Player’s turn, he chooses a descendent
of any previous O-move

18

Games on arenas

• At Opponent’s turn, he chooses a
descendent of Player’s last move.

• At Player’s turn, he chooses a descendent
of any previous O-move

• the justification pointer tells us which one

18

Strategies

• A strategy σ is a set of even-length plays of
the game:

• non-empty and even-prefix-closed

• deterministic: sab, sac ∈σ ⇒ b=c.

• Set of plays ≈ tree = (partial, infinite)
normal form.

19

Definability...

• A strategy σ is total if it always has a
response:

s ∈σ, sa legal ⇒ ∃ sab ∈σ

• Finite, total strategies correspond to normal
forms.

20

... but not yet a model

• We can interpret every normal form as a
strategy.

• We do not yet have an interpretation of
arbitrary λ-terms.

• We want one! And we want it to be
compositional.

21

Problem: asymmetry

• These plays and strategies are asymmetric:

• Opponent always has to move directly
down the tree

• Player can backtrack.

• Felscher (1985) referred to these as E-
strategies.

22

Composition as
interaction?

• The natural way to compose strategies
would be by interaction.

• The asymmetry means our strategies
cannot interact properly.

23

A failing interaction
((γ→γ) →(γ→γ))

λf.λz.f(f(z))

24

A failing interaction
((γ→γ) →(γ→γ))

λf.λz.f(f(z))

 → (γ→γ)

as argument to λF.λx.F(λy.y)(x)Supply

24

A failing interaction
((γ→γ) →(γ→γ)) → (γ→γ)

λf.λz.f(f(z)) Supply as argument to λF.λx.F(λy.y)(x)

25

A failing interaction
((γ→γ) →(γ→γ)) → (γ→γ)

λf.λz.f(f(z)) Supply as argument to λF.λx.F(λy.y)(x)

25

A failing interaction
((γ→γ) →(γ→γ)) → (γ→γ)

λf.λz.f(f(z)) Supply as argument to λF.λx.F(λy.y)(x)

But Opponent doesn’t backtrack!

25

Restoring symmetry:
innocence

26

Restoring symmetry:
innocence

• The solution to this asymmetry was
discovered by Hyland and Ong (Inf. Comp.
2000), and was also present in the work of
Coquand (JSL 1995).

• The idea is:

• let both players backtrack

26

Restoring symmetry:
innocence

• The solution to this asymmetry was
discovered by Hyland and Ong (Inf. Comp.
2000), and was also present in the work of
Coquand (JSL 1995).

• The idea is:

• let both players backtrack

great! but now
plays don’t look like paths

in the term

26

Restoring symmetry:
innocence

• The solution to this asymmetry was
discovered by Hyland and Ong (Inf. Comp.
2000), and was also present in the work of
Coquand (JSL 1995).

• The idea is:

• let both players backtrack

• recover definability by constraining the

26

Restoring symmetry:
innocence

• The solution to this asymmetry was
discovered by Hyland and Ong (Inf. Comp.
2000), and was also present in the work of
Coquand (JSL 1995).

• The idea is:

• let both players backtrack

• recover definability by constraining the

oh... so
from P’s point of view,
O isn’t backtracking!

smart!

26

Arenas and plays

27

Arenas and plays

• An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

• O / P alternate down the trees.

27

Arenas and plays

• An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

• O / P alternate down the trees.

1

4

32

5

27

Arenas and plays

• An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

• O / P alternate down the trees.

• A play is a sequence of moves-
with-pointers.

• Pointer-chains are paths in the
arena.

1

4

32

5

27

Arenas and plays

• An arena is a forest (collection
of trees) of moves, labelled as
Opponent and Player moves.

• O / P alternate down the trees.

• A play is a sequence of moves-
with-pointers.

• Pointer-chains are paths in the
arena.

1

4

32

5

1 2 4 3 5

27

Views

• We want Player to behave as though O
were not backtracking.

• At any point in the play, we can erase
certain moves to give a P-view which
disguises backtracking:

1 2 4 3 5

28

Views

• We want Player to behave as though O
were not backtracking.

• At any point in the play, we can erase
certain moves to give a P-view which
disguises backtracking:

1 2 4 3 5

28

Innocent strategy

• An innocent strategy σ on an arena is a set
of even-length plays such that:

• σ is non-empty and closed under even-
prefix

• σ is deterministic

• if sab∈σ, t∈σ, and view(sa) = view (ta)
then tab∈σ

29

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

30

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

30

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

30

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

30

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

30

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

30

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

30

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

31

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

31

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

31

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

31

Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)

31

We have a model
((γ→γ) →(γ→γ))

(λf.λz.f(f(z)))

32

We have a model
((γ→γ) →(γ→γ))

(λf.λz.f(f(z)))

32

We have a model
 (γ→γ)

(λF.λx.F(λy.y)(x)) (λf.λz.f(f(z)))

((γ→γ) →(γ→γ)) →

33

We have a model
 (γ→γ)

(λF.λx.F(λy.y)(x)) (λf.λz.f(f(z)))

33

We have a model
 (γ→γ)

(λF.λx.F(λy.y)(x)) (λf.λz.f(f(z)))

λx.x

33

Soundness

Fact [cf. Hyland-Ong 2000]

If M: A → B and N : A are normal forms, the
strategy obtained by

• allowing the strategies for M and N to interact

• hiding the play in A

is the total, innocent strategy corresponding to
the normal form of MN.

34

Soundness

• Proving soundness is hard work.

• We approach it by showing that innocent
strategies have the structure of a Cartesian
closed category.

• CCCs are just what is needed to make a
sound model of the λ-calculus.

35

A category

• We can build a category of arenas and
innocent strategies:

• Objects are arenas

• Morphisms are innocent strategies

• Composition is interaction plus hiding

• Identity is the copycat strategy

36

A category

• We can build a category of arenas and
innocent strategies:

• Objects are arenas

• Morphisms are innocent strategies

• Composition is interaction plus hiding

• Identity is the copycat strategy

you
have to show that

this preserves
innocence!

36

A category

• We can build a category of arenas and
innocent strategies:

• Objects are arenas

• Morphisms are innocent strategies

• Composition is interaction plus hiding

• Identity is the copycat strategy

36

Copycat strategies

37

Copycat strategies

((γ→γ) →(γ→γ))

λf.f

37

Copycat strategies

((γ→γ) →(γ→γ))

λf.f eta-expand

37

Copycat strategies

((γ→γ) →(γ→γ))

λf. λx.fx

37

Copycat strategies

((γ→γ) →(γ→γ))

λf. λx.fx

37

Copycat strategies

((γ→γ) →(γ→γ))

λf. λx.fx

37

Copycat strategies

((γ→γ) →(γ→γ))

λf. λx.fx

37

Copycat strategies

((γ→γ) →(γ→γ))

λf. λx.fx

37

Cartesian closure

Finally we show that the category has
products and exponentials:

38

Cartesian closure

Finally we show that the category has
products and exponentials:

A B

A ⨉ B

38

Cartesian closure

Finally we show that the category has
products and exponentials:

A B

A ⨉ B

A

B

A⇒B

38

Cartesian closure

Finally we show that the category has
products and exponentials:

A B

A ⨉ B

A

B

A⇒B

After proving that these behave properly, we
get soundness.

38

Full completeness

39

Full completeness

• Full completeness (definability) of the model
is now easy:

39

Full completeness

• Full completeness (definability) of the model
is now easy:

• an innocent strategy is determined by the
E-strategy it contains

39

Full completeness

• Full completeness (definability) of the model
is now easy:

• an innocent strategy is determined by the
E-strategy it contains

• finite, total E-strategies correspond to
terms.

39

Literature note 1:
abstract machines

The soundness of interaction of strategies as
a model of λ-application means that it can be
used as a kind of abstract machine for
computation. See e.g.

Danos, Herbelin and Regnier, Games
Semantics and Abstract Machines, 1996.

Curien and Herbelin, Computing with
Abstract Böhm Trees, 1998.

40

Literature note 2:
innocence semantically
• We have presented innocence as a

syntactically-inspired condition.

• The work of Melliès on Asynchronous Games
shows that it can be recovered from
semantically-inspired considerations to do
with permutability of moves.

Melliès, Asynchronous Games 2: The True
Concurrency of Innocence, 2006.

41

2. Adding data and
recursion: PCF

42

PCF

• So far we have only considered logic rather than
programming.

• Plotkin’s language PCF is a prototypical functional
programming language.

• Typed λ-calculus with base types for numeric and
boolean values.

• Constants for arithmetic and boolean operations.

• Recursion.

43

PCF

• Types: A ::= N | B | A →A

• Terms: M ::= x | λx.M | MM

 | n | succ | pred | true | false ...

 | if-then-else | Y

• We will focus on PCF over the Booleans.

44

A Game for the
Booleans

• We introduce an arena with data to model
the Booleans:

q

tt ff

• Note: this is the same as the arena for the
type γ→γ→γ which encodes Booleans in
the λ-calculus.

45

if-then-else
B B B B

q

tt

ff

q

q

tt

46

Exercise

• In the λ-calculus, write down the term
corresponding to if-then-else, when
Booleans are encoded using γ→γ→γ

• true is λx.λy.x, false is λx.λy.y

• if-then-else (over Booleans) is...?

• Compare the corresponding strategy to
the one just indicated.

47

Recursion

• Strategies are sets of plays.

• Directed unions of innocent strategies are
innocent strategies, and composition
preserves them.

• We can therefore define least fixed points,
which lets us interpret recursion in the usual
way.

• Of course, we abandon totality.

48

Definability for PCF?

• The CCC of arenas and innocent strategies
therefore contains a model of PCF.

• Does it have the definability property?

• Is there a class of “normal form” PCF terms
that correspond to the finite innocent
strategies?

49

Normal Forms

• What might a normal form look like?

• Something like this:

λx1x2...xn. if xi M1...Mk then N1 else N2

• Does every strategy behave like this?

50

Early exits

(B → B) → B

q

q

tt

q

Consider a strategy which plays as shown below:

This does not correspond to any PCF-definable
term.

51

Bracketing condition
Our normal forms

λx1x2...xn. if xi M1...Mk then N1 else N2

and in fact all PCF terms, satisfy a bracketing
condition:

no question q is answered until all
questions asked after q have been

answered

52

Bracketing condition

• Add a label to moves in arenas: every move
is a question or an answer. In a play, an
answer move answers the question it points
to.

• A play s satisfies P-bracketing if and only if:

for all prefixes ta of s, where a is a P-answer,
a answers the last unanswered question in

view(t).

53

Formalities

• An innocent strategy σ is well-bracketed if
every play s∈σ is well-bracketed.

• Composition of well-bracketed strategies
yields a well-bracketed strategy.

• The category of arenas and well-bracketed
innocent strategies is a CCC; it contains
our model of PCF.

54

Definability for PCF

• “Finite” means “finite as an E-strategy”, i.e.
containing a finite number of distinct views.

• The proof is a direct extension of the one
for λ-calculus.

Theorem [Hyland-Ong 2000]

Every finite, innocent, well-
bracketed strategy corresponds
to a term of PCF

55

Definability for PCF

PCF
programs

Innocent,
well-bracketed

strategies

56

3. Control

57

Bracketing vs Control

• The bracketing condition restricts functions
to a stack discipline for calls and returns.

• In programming terms, this means the
absence of control operators.

• Can we make that correspondence precise?

58

Add a control operator

• Add your favourite control operator to PCF.
For example, add an empty type ⟂ and a
constant

callcc: ((B→⟂)→B)→B

• How do we model this?

59

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

60

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q

60

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q
q

60

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q
q

a

60

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q

a

q

a

60

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q
q

60

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q
q

61

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q
q

q

61

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q
q

q

a

61

callcc

((B → ⟂) → B) → B

Interpreting ⟂ as the one-move arena, we
model callcc with the following strategy:

q

a

q

q

a

61

Definability
This gives us a model of PCF + callcc, with a
definability property.

Theorem [Laird 1997]

Every finite, innocent, (not
necessarily well-bracketed)
strategy corresponds to a term of
PCF + callcc.

62

Definability for PCF
+callcc

PCF+callcc
programs

Innocent
strategies

63

Games and linear
continuations

• This result demonstrates that the games
model is a continuations-based model,
slightly disguised.

• Laird (2005) shows that the well-bracketed
strategies are exactly those obeying a
certain linear continuation passing regime:

• answers are continuations that can be
invoked at most once.

64

4. Beyond innocence:
state

65

Non-innocent
strategies

• Strategies without the innocence constraint
form another CCC.

• Our analysis so far has exploited a tight
correspondence between views and paths in
syntax trees.

• If we abandon innocence, what do we get?

66

Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
F

λy.

y

λy.
F

67

Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
F

λy.

y

λy.
F

67

Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
F

λy.

y

λy.
F

67

Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
F

λy.

y

λy.
F

67

Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
F

λy.

y

λy.
F

67

Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
F

λy.

y

λy.
F

67

Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
F

λy.

y

λy.
F

67

Changing minds

• How can a program change its responses
like this?

• Using state!

68

Changing minds

• How can a program change its responses
like this?

• Using state!

λF.λx.new v:= true in

 F(λy. if !v then v:=false; return y

 else F(...))

68

Stateful strategies

• Non-innocent strategies directly represent
stateful computation.

• The state itself is implicit: what we see in
the strategy is the behaviour implemented
by using the state.

• Contrast with explicit-state models, e.g.
those based on a state monad.

69

Stateful strategies

• Non-innocent strategies directly represent
stateful computation.

• The state itself is implicit: what we see in
the strategy is the behaviour implemented
by using the state.

• Contrast with explicit-state models, e.g.
those based on a state monad.

this idea was first
explored by Uday Reddy

(1993)

69

Idealised Algol

• Reynolds’s Idealised Algol is a prototypical
higher-order imperative programming
language

IA = PCF + assignable
variables + block

structure

70

Idealised Algol

• Reynolds’s Idealised Algol is a prototypical
higher-order imperative programming
language

IA = simple while
programs + block

structure + λ-calculus

70

Idealised Algol

• Types: A :: = comm | exp | var | A → A

• Terms: M ::= PCF | x:= M | !x | M ; M

 | new x in M

71

Commands and
variables

• To interpret commands and variables, we
can no longer rely on the analogy with
normal-form trees.

• We have to do some semantics!

• Consider the observable actions available
for each type, and build an appropriate
arena.

72

Commands

73

Commands

• With no explicit store, what can we
observe of a command?

73

Commands

• With no explicit store, what can we
observe of a command?

• We can try to run it: “run”

73

Commands

• With no explicit store, what can we
observe of a command?

• We can try to run it: “run” r

73

Commands

• With no explicit store, what can we
observe of a command?

• We can try to run it: “run”

• We will notice when it terminates:
“done”.

r

73

Commands

• With no explicit store, what can we
observe of a command?

• We can try to run it: “run”

• We will notice when it terminates:
“done”.

r

d

73

Commands

• With no explicit store, what can we
observe of a command?

• We can try to run it: “run”

• We will notice when it terminates:
“done”.

• That’s all.

r

d

73

Sequential composition
comm → comm → comm

r
r
d

r
d

d

74

Variables

• Variables are more complex:

• we can try to read a value, and get
something back

• we can try to store a value; this is like a
command, so we just observe
termination.

75

Variables

write(true) write(false) read

true falseok ok

76

Assignment
var → exp → comm

rq

a

write(a)

ok

d

77

Example
x: var, y: var ⊢ x := not (!y) : comm

78

Example
x: var, y: var ⊢ x := not (!y) : comm

r

78

Example
x: var, y: var ⊢ x := not (!y) : comm

r
read

78

Example
x: var, y: var ⊢ x := not (!y) : comm

r
read

b

78

Example
x: var, y: var ⊢ x := not (!y) : comm

r
read

b
write(not b)

78

Example
x: var, y: var ⊢ x := not (!y) : comm

r
read

b
write(not b)

ok

78

Example
x: var, y: var ⊢ x := not (!y) : comm

r
read

b
write(not b)

ok

d

78

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

r

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

rwrite(true)

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

rwrite(true)

ok

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

rwrite(true)

ok
r

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

rwrite(true)

ok
r

d

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

r

read

write(true)

ok
r

d

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

r

read
b

write(true)

ok
r

d

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

r

read
b

write(true)

ok
r

d

doesn’t have to be
“true”

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

r

read
b

write(true)

ok
r

d

write(not b)

doesn’t have to be
“true”

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

r

read
b

write(true)

ok
r

d

write(not b)
ok

doesn’t have to be
“true”

79

Another example
c:comm, x: var ⊢ x:=true; c; x := not(!x) : comm

r

read
b

write(true)

ok

d

r

d

write(not b)
ok

doesn’t have to be
“true”

79

Bad variable behaviour

80

Bad variable behaviour

• Why don’t we try to restrict plays so that
the b in the previous example is always
“true”?

80

Bad variable behaviour

• Why don’t we try to restrict plays so that
the b in the previous example is always
“true”?

• The command c could later become bound
to something that alters x, so it is vital to
allow the read to return any value.

80

Local variable
behaviour

• If we wrap the term in a variable allocation

new x in x:=true; c; x := not(!x)

it is no longer possible for c to alter x.

• The variable x becomes a good variable.

• It also becomes hidden: the environment
should not know it is there.

81

Variable allocation

• The command new x in M is just like M, but:

• x is bound to a storage cell, so M’s
interactions with x should be variable-
like.

• the outside world should no longer see x.

• How can we model this? Interaction plus
hiding!

82

A cell strategy
(var → comm) → comm

r
r

d

d

⋮
s
⋮

83

A cell strategy
(var → comm) → comm

r
r

d

d

⋮
s
⋮

any “good” sequence of
reads and writes

83

Allocation in action
(var → comm)

r

d

read
true

write(true)

ok

write(false)

ok

r

d

 → comm

84

Allocation in action
(var → comm)

r

d

read
true

write(true)

ok

write(false)

ok

r

d

 → comm

answering “true”
here requires non-

innocence

84

Allocation in action
comm →

r
d

(var → comm)

r

d

read
true

write(true)

ok

write(false)

ok

84

Allocation in action
comm

r
d

r

d

 comm→ (var → comm)

r

d

read
true

write(true)

ok

write(false)

ok

→ →

85

Allocation in action
comm

r
d

r

d

 comm→

85

Allocation in action
comm

r

d

r

d

 comm→

86

Allocation in action
comm

r

d

r

d

 comm→

The internal interaction went as expected,
and now it is invisible.

86

A remark

• In this model, only variable allocation
requires a non-innocent strategy: terms
without new x in ... are interpreted
innocently.

• This is a marked difference from explicit
state models, where assignment and lookup
operations access the state.

87

Definability?

• We have a model of Idealised Algol, and we
can prove that it is sound.

• Does it have the definability property?

88

Visibility

• Our non-innocent strategies are very
powerful. E.g.:
(A → (A → comm) →comm) → comm

r

89

Visibility

• Our non-innocent strategies are very
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
r

89

Visibility

• Our non-innocent strategies are very
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
r

r

89

Visibility

• Our non-innocent strategies are very
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
r

r
d

89

Visibility

• Our non-innocent strategies are very
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
r

r

q
d

89

Visibility

• Our non-innocent strategies are very
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
r

r

q

q

d

89

Visibility

• Our non-innocent strategies are very
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
r

r

q

q

d

• No Idealised Algol program has this
behaviour.

89

Visibility

• Our non-innocent strategies are very
powerful. E.g.:

• No Idealised Algol program has this
behaviour.

89

Visibility

• To eliminate this strategy, we impose a new
constraint: visibility.

• A play s satisfies P-visibility if, for every prefix
tm where m is a P-move, the justifier of m
is in view(t).

• (All plays in innocent strategies satisfy this
automatically.)

90

Visibility
(A → (A → comm) →comm) → comm

r
r

r
d

q

q

91

Visibility
(A → (A → comm) →comm) → comm

r
r

r
d

q

q

91

Visibility
(A → (A → comm) →comm) → comm

r
r

r
d

q

q

Eliminating such plays lets us recover definability.
But how to prove it?

91

Proving definability

• We cannot directly use the same approach
as in the innocent case: strategies no longer
correspond to λ-terms.

• We can reduce the problem to the innocent
case.

92

Factorization
Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible
strategy on A → comm is of the
form σ ; cell for some innocent σ :
A → (var →comm).

93

Factorization
Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible
strategy on A → comm is of the
form σ ; cell for some innocent σ :
A → (var →comm).

Proof: innocently
simulate the non-innocent

strategy by storing the
history in the cell.

93

Factorization

• Definability for innocent strategies works as
usual.

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible
strategy on A → comm is of the
form σ ; cell for some innocent σ :
A → (var →comm).

93

Factorization

• Definability for innocent strategies works as
usual.

• If M is a term defining σ, then new x in M defines
σ ; cell.

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible
strategy on A → comm is of the
form σ ; cell for some innocent σ :
A → (var →comm).

93

Another definability
result

Theorem [Abramsky + M 1996]
Every finite, well-bracketed, P-
visible strategy on A → comm is
definable by a term of Idealised
Algol.

94

Definability for
Idealised Algol

IA
programs

Well-bracketed,
visible strategies

95

Another definability
result?

Probably a theorem that I don’t
think anyone has actually
bothered to prove
Every finite (not necessarily well-
bracketed) P-visible strategy on A →
comm is definable by a term of Idealised
Algol + callcc.

96

5. Beyond visibility: more
state

97

What can general
strategies express?

• I am afraid I can no longer pretend to make
the progression seem logical: I’ll just have to
tell you.

• Strategies that may break visibility
correspond exactly to programs with higher
order store.

98

Ground vs higher order
store

• Because ground-type data can be
completely evaluated, assignment was easy
to interpret.

var → exp → comm
rq

a

write(a)

ok

d
99

Ground vs higher order
store

• Because ground-type data can be
completely evaluated, assignment was easy
to interpret.

var → exp → comm
rq

a

write(a)

ok

d

fully evaluate the exp
before assigning

99

Ground vs higher order
store

• How could we do this for a general type A?

var[A] → A → comm
r

q

q’

100

Ground vs higher order
store

• How could we do this for a general type A?

var[A] → A → comm
r

q

q’

this is a non-final O-
move; what on earth
should we do now?

100

What is var[A] anyway?

• How can we store a program of type A in a
variable?

• We can hardly have a move

write(σ)

where σ is a strategy.

101

var take two

• An alternate var type, for ground data, is
given by

exp ⨉ (exp → comm)

• Think of this as the product of

• the “read method”, returning an exp

• the “write method”, taking an exp and
returning the assignment command

102

Definability again

• This gives another way to interpret Idealised
Algol, and we can obtain another definability
result.

• Perhaps this version of var will generalise to
arbitrary types? Define

var[A] = A ⨉ (A → comm).

103

Assignment and lookup

• The type for the assignment constant is now

(A ⨉ (A → comm)) → A → comm

• Now it’s easy to interpret, using projection.

• Lookup is similarly simple: just use the other
projection

(A ⨉ (A → comm)) → A

104

A cell strategy?

• How can we implement a cell strategy of
type

(var[A] → comm) → comm ?
r

r

d

d

⋮
s
⋮

105

A cell strategy?

• How can we implement a cell strategy of
type

(var[A] → comm) → comm ?
r

r

d

d

⋮
s
⋮

what is a “good”
sequence in this game?

105

cells
(A ⨉ (A → comm) → comm) → comm

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r

r

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d

r

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d
r

r

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d

r

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d
r

r

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d
r
d

r

r

r

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d
r
d

r

r

r

q

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d
r
d

copycat
q

r

r

r

q

106

cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d
r
d

copycat
q

r

r

r

q
 P breaks visibility

here.

106

Factorization again
Theorem (approx)
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a
type A → comm is of the form σ ; celln
for some P-visible
σ : A → (var[comm]n →comm).

107

Factorization again
Theorem (approx)
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a
type A → comm is of the form σ ; celln
for some P-visible
σ : A → (var[comm]n →comm). Proof: turn

all the violations of P-
visibility into violations of
O-visibility performed by

the cell.

107

Factorization again
Theorem (approx)
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a
type A → comm is of the form σ ; celln
for some P-visible
σ : A → (var[comm]n →comm).

107

Factorization again
Theorem (approx)
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a
type A → comm is of the form σ ; celln
for some P-visible
σ : A → (var[comm]n →comm).

This means that arbitrary well-bracketed
strategies can be expressed as a composition
of cells storing comm and boolean types.

107

Definability again

• Our cell strategies allow us to interpret a
language where terms of any type can be
stored in the variables.

• The factorization result means that we have
a definability result once more: every finite
strategy is the denotation of some term in
this language.

108

Literature note 3:

• Laird has shown how the ideas at play here
can be expressed algebraically, in terms of
his sequoidal categories.

• Laird, A Categorical Semantics of Higher-Order
Store, CTCS 2002.

109

Definability for Higher-
Order Store

Programs
with ho-

store

Well-bracketed
strategies

110

Closing remarks

111

Conditions classify
programs

λ-calculus

PCF

PCF+callcc

Idealised Algol

Higher-type Store

finite, total, innocent

innocent, P-bracketed

innocent

P-bracketed, P-visible

P-bracketed

112

O is unconstrained

• Our behavioural constraints have all been
expressed as conditions on strategies.

• O is free to behave as he wishes.

• This means it makes sense to allow, e.g., a
PCF term to interact in an IA context.

113

Full abstraction

• In each case, we can lift our full completeness
(definability) result to a full abstraction result
by means of a quotient:

σ≈τ:A if and only if for all α:A→comm,
σ;α=τ;α.

In the case of the imperative languages, this
quotient can be defined directly.

114

Fin

115

