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Game semantics for 
programs

• Game semantics models programs as 
certain kinds of strategies on games.

• Different sorts of programs give rise to 
different sorts of strategies.

• Properties of strategies give an abstract 
characterization of computational behaviour.

3



The semantics game

Programs Something else

Every program corresponds to a something
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Game Semantics

Programs Strategies

Every program corresponds to a strategy
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Definability

Programs Strategies

Every program corresponds to a strategy

... and every (finite) strategy comes from a program
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Game Semantics

• We will see how game semantics gives 
models with definability for: 

• pure functional programs

• imperative programs

• programs with control operators

• programs with higher-order store
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Strategies and games

• Game semantics models a program as a 
strategy for a game. 

• Games define what moves are available.

• Constraints on strategies limit their 
behaviour. 
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Constraints and effects

Constraining 
strategies with: means you don’t get:

Innocence Store

Bracketing Control

Visibility Higher-order store
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Definability

Every program corresponds to a strategy

... and every (finite) strategy comes from a program

... and behavioural properties of strategies classify programs
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1. Pure functional 
programs
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Typed lambda calculus

• Terms:  M ::= x | λx.M | MM

• Types:   A ::= γ | A→A 

• Normal forms: λx1x2...xn . xi M1M2...Mk
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Normal forms as trees
λx1x2...xn

xi

λy1y2...ym λz1z2...zn

xkyj

...

13



Normal forms as trees
λx1x2...xn

xi

λy1y2...ym λz1z2...zn

xkyj

...
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 A path in the tree

• Root node

• Choice of variable

• Choice of argument

• Choice of variable

• ...
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The path as a picture
((γ γ) (γ γ)) (γ γ)

λF.λx F λy F λz z( ( . ). (..)) (...).
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The path as a picture
((γ γ) (γ γ)) (γ γ)

λF.λx
F

λy

F

λz

z
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Games on arenas

• View the type as a tree: each → connects a 
node to its parent.

• Describe a term in normal form by playing a 
two-player game:

• Opponent interrogates the term by 
choosing branches

• Player represents the term by choosing 
head-variables
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Games on arenas
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Games on arenas

• At Opponent’s turn, he chooses a 
descendent of Player’s last move. 
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Games on arenas

• At Opponent’s turn, he chooses a 
descendent of Player’s last move. 

• At Player’s turn, he chooses a descendent 
of any previous O-move

• the justification pointer tells us which one
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Strategies

• A strategy σ is a set of even-length plays of 
the game:

• non-empty and even-prefix-closed

• deterministic:  sab, sac ∈σ ⇒ b=c.

• Set of plays ≈ tree = (partial, infinite) 
normal form. 
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Definability...

• A strategy σ is total if it always has a 
response:

s ∈σ, sa legal ⇒ ∃ sab ∈σ

• Finite, total strategies correspond to normal 
forms. 
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... but not yet a model

• We can interpret every normal form as a 
strategy. 

• We do not yet have an interpretation of 
arbitrary λ-terms.

• We want one! And we want it to be 
compositional. 
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Problem: asymmetry

• These plays and strategies are asymmetric:

• Opponent always has to move directly 
down the tree

• Player can backtrack. 

• Felscher (1985) referred to these as E-
strategies. 
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Composition as 
interaction?

• The natural way to compose strategies 
would be by interaction. 

• The asymmetry means our strategies 
cannot interact properly. 
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A failing interaction
((γ→γ) →(γ→γ))

λf.λz.f(f(z)) 
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A failing interaction
((γ→γ) →(γ→γ))

λf.λz.f(f(z)) 

 →  (γ→γ)

as argument to λF.λx.F(λy.y)(x)Supply
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A failing interaction
((γ→γ) →(γ→γ))  →  (γ→γ)

λf.λz.f(f(z)) Supply as argument to λF.λx.F(λy.y)(x)
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A failing interaction
((γ→γ) →(γ→γ))  →  (γ→γ)

λf.λz.f(f(z)) Supply as argument to λF.λx.F(λy.y)(x)
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A failing interaction
((γ→γ) →(γ→γ))  →  (γ→γ)

λf.λz.f(f(z)) Supply as argument to λF.λx.F(λy.y)(x)

But Opponent doesn’t backtrack!
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Restoring symmetry: 
innocence

26



Restoring symmetry: 
innocence

• The solution to this asymmetry was 
discovered by Hyland and Ong (Inf. Comp. 
2000), and was also present in the work of 
Coquand (JSL 1995).

• The idea is:

• let both players backtrack
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Restoring symmetry: 
innocence

• The solution to this asymmetry was 
discovered by Hyland and Ong (Inf. Comp. 
2000), and was also present in the work of 
Coquand (JSL 1995).

• The idea is:

• let both players backtrack

great! but now 
plays don’t look like paths 

in the term
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Restoring symmetry: 
innocence

• The solution to this asymmetry was 
discovered by Hyland and Ong (Inf. Comp. 
2000), and was also present in the work of 
Coquand (JSL 1995).

• The idea is:

• let both players backtrack

• recover definability by constraining the 

oh... so 
from P’s point of view, 
O isn’t backtracking! 

smart!
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Arenas and plays
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Arenas and plays

• An arena is a forest (collection 
of trees) of moves, labelled as 
Opponent and Player moves.

• O / P alternate down the trees. 
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Arenas and plays

• An arena is a forest (collection 
of trees) of moves, labelled as 
Opponent and Player moves.

• O / P alternate down the trees. 

• A play is a sequence of moves-
with-pointers. 

• Pointer-chains are paths in the 
arena.

1

4

32

5

1 2 4 3 5

27



Views

• We want Player to behave as though O 
were not backtracking. 

• At any point in the play, we can erase 
certain moves to give a P-view which 
disguises backtracking:

1 2 4 3 5
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Views

• We want Player to behave as though O 
were not backtracking. 

• At any point in the play, we can erase 
certain moves to give a P-view which 
disguises backtracking:

1 2 4 3 5
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Innocent strategy

• An innocent strategy σ on an arena is a set 
of even-length plays such that:

• σ is non-empty and closed under even-
prefix

• σ is deterministic

• if sab∈σ, t∈σ, and view(sa) = view (ta) 
then tab∈σ
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Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)
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Example: a non-
innocent strategy

((γ γ) (γ γ)) (γ γ)
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We have a model
((γ→γ) →(γ→γ))

(λf.λz.f(f(z))) 
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We have a model
((γ→γ) →(γ→γ))

(λf.λz.f(f(z))) 
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We have a model
 (γ→γ)

(λF.λx.F(λy.y)(x)) (λf.λz.f(f(z))) 

((γ→γ) →(γ→γ))  → 
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We have a model
 (γ→γ)

(λF.λx.F(λy.y)(x)) (λf.λz.f(f(z))) 
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We have a model
 (γ→γ)

(λF.λx.F(λy.y)(x)) (λf.λz.f(f(z))) 

λx.x 
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Soundness

Fact [cf. Hyland-Ong 2000] 

If M: A → B and N : A are normal forms, the 
strategy obtained by 

• allowing the strategies for M and N to interact

• hiding the play in A

is the total, innocent strategy corresponding to 
the normal form of MN. 
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Soundness

• Proving soundness is hard work.

• We approach it by showing that innocent 
strategies have the structure of a Cartesian 
closed category.

• CCCs are just what is needed to make a 
sound model of the λ-calculus.
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A category

• We can build a category of arenas and 
innocent strategies:

• Objects are arenas

• Morphisms are innocent strategies

• Composition is interaction plus hiding

• Identity is the copycat strategy
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A category

• We can build a category of arenas and 
innocent strategies:

• Objects are arenas

• Morphisms are innocent strategies

• Composition is interaction plus hiding

• Identity is the copycat strategy

you 
have to show that 

this preserves 
innocence!
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A category

• We can build a category of arenas and 
innocent strategies:

• Objects are arenas

• Morphisms are innocent strategies

• Composition is interaction plus hiding

• Identity is the copycat strategy
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Copycat strategies
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Copycat strategies

((γ→γ) →(γ→γ))

λf.f 
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Copycat strategies

((γ→γ) →(γ→γ))

λf.f eta-expand
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Copycat strategies

((γ→γ) →(γ→γ))

λf. λx.fx 
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Copycat strategies

((γ→γ) →(γ→γ))

λf. λx.fx 
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Cartesian closure

Finally we show that the category has 
products and exponentials:
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A B

A ⨉ B
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Cartesian closure

Finally we show that the category has 
products and exponentials:

A B

A ⨉ B

A

B

A⇒B
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Cartesian closure

Finally we show that the category has 
products and exponentials:

A B

A ⨉ B

A

B

A⇒B

After proving that these behave properly, we 
get soundness.
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Full completeness
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• Full completeness (definability) of the model 
is now easy:
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Full completeness

• Full completeness (definability) of the model 
is now easy:

• an innocent strategy is determined by the 
E-strategy it contains

• finite, total E-strategies correspond to 
terms.
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Literature note 1: 
abstract machines

The soundness of interaction of strategies as 
a model of λ-application means that it can be 
used as a kind of abstract machine for 
computation. See e.g.

Danos, Herbelin and Regnier, Games 
Semantics and Abstract Machines, 1996.

Curien and Herbelin, Computing with 
Abstract Böhm Trees, 1998. 
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Literature note 2: 
innocence semantically
• We have presented innocence as a 

syntactically-inspired condition. 

• The work of Melliès on Asynchronous Games 
shows that it can be recovered from 
semantically-inspired considerations to do 
with permutability of moves. 

Melliès, Asynchronous Games 2: The True 
Concurrency of Innocence, 2006. 
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2. Adding data and 
recursion: PCF
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PCF

• So far we have only considered logic rather than 
programming. 

• Plotkin’s language PCF is a prototypical functional 
programming language.

• Typed λ-calculus with base types for numeric and 
boolean values. 

• Constants for arithmetic and boolean operations.

• Recursion.
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PCF

• Types:    A ::= N | B | A →A

• Terms:   M ::= x | λx.M | MM 

                   | n | succ | pred | true | false ...

                   | if-then-else | Y

• We will focus on PCF over the Booleans.
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A Game for the 
Booleans

• We introduce an arena with data to model 
the Booleans:

q

tt ff

• Note: this is the same as the arena for the 
type γ→γ→γ which encodes Booleans in 
the λ-calculus.
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if-then-else
B B B B

q

tt

ff

q

q

tt
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Exercise

• In the λ-calculus, write down the term 
corresponding to if-then-else, when 
Booleans are encoded using γ→γ→γ

• true is λx.λy.x, false is λx.λy.y

• if-then-else (over Booleans) is...?

• Compare the corresponding strategy to 
the one just indicated.
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Recursion

• Strategies are sets of plays.

• Directed unions of innocent strategies are 
innocent strategies, and composition 
preserves them.

• We can therefore define least fixed points, 
which lets us interpret recursion in the usual 
way.

• Of course, we abandon totality.
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Definability for PCF?

• The CCC of arenas and innocent strategies 
therefore contains a model of PCF.

• Does it have the definability property?

• Is there a class of “normal form” PCF terms 
that correspond to the finite innocent 
strategies?
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Normal Forms

• What might a normal form look like?

• Something like this: 

λx1x2...xn. if xi M1...Mk then N1 else N2

• Does every strategy behave like this?

50



Early exits

(B → B) → B

q

q

tt

q

Consider a strategy which plays as shown below:

This does not correspond to any PCF-definable 
term.
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Bracketing condition
Our normal forms 

λx1x2...xn. if xi M1...Mk then N1 else N2

and in fact all PCF terms, satisfy a bracketing 
condition:

no question q is answered until all 
questions asked after q have been 

answered
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Bracketing condition

• Add a label to moves in arenas: every move 
is a question or an answer. In a play, an 
answer move answers the question it points 
to. 

• A play s satisfies P-bracketing if and only if:

for all prefixes ta of s, where a is a P-answer, 
a answers the last unanswered question in 

view(t). 
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Formalities

• An innocent strategy σ is well-bracketed if 
every play s∈σ is well-bracketed.

• Composition of well-bracketed strategies 
yields a well-bracketed strategy.

• The category of arenas and well-bracketed 
innocent strategies is a CCC; it contains 
our model of PCF. 
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Definability for PCF

• “Finite” means “finite as an E-strategy”, i.e. 
containing a finite number of distinct views.

• The proof is a direct extension of the one 
for λ-calculus. 

Theorem [Hyland-Ong 2000]

Every finite, innocent, well-
bracketed strategy corresponds 
to a term of PCF
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Definability for PCF

PCF
programs

Innocent, 
well-bracketed

strategies
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3. Control
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Bracketing vs Control

• The bracketing condition restricts functions 
to a stack discipline for calls and returns.

• In programming terms, this means the 
absence of control operators.

• Can we make that correspondence precise?
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Add a control operator

• Add your favourite control operator to PCF. 
For example, add an empty type ⟂ and a 
constant

callcc: ((B→⟂)→B)→B

• How do we model this?
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callcc

((B  →  ⟂)  →  B)  →  B

Interpreting ⟂ as the one-move arena, we 
model callcc with the following strategy:
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callcc
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model callcc with the following strategy:

q

a

q

q

a

61



Definability
This gives us a model of PCF + callcc, with a 
definability property.

Theorem [Laird 1997]

Every finite, innocent, (not 
necessarily well-bracketed) 
strategy corresponds to a term of 
PCF + callcc.
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Definability for PCF
+callcc

PCF+callcc
programs

Innocent 
strategies
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Games and linear 
continuations

• This result demonstrates that the games 
model is a continuations-based model, 
slightly disguised.

• Laird (2005) shows that the well-bracketed 
strategies are exactly those obeying a 
certain linear continuation passing regime: 

• answers are continuations that can be 
invoked at most once.  
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4. Beyond innocence: 
state

65



Non-innocent 
strategies

• Strategies without the innocence constraint 
form another CCC. 

• Our analysis so far has exploited a tight 
correspondence between views and paths in 
syntax trees.

• If we abandon innocence, what do we get?  
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Non-innocence

((γ γ) (γ γ)) (γ γ)

λF.λx.
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λy.

y

λy.
F
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Non-innocence

((γ γ) (γ γ)) (γ γ)
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λy.

y
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F
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Changing minds

• How can a program change its responses 
like this?

• Using state!
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Changing minds

• How can a program change its responses 
like this?

• Using state!

λF.λx.new v:= true in

             F(λy. if !v then v:=false; return y 

        else F( ... )  )
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Stateful strategies

• Non-innocent strategies directly represent 
stateful computation.

• The state itself is implicit: what we see in 
the strategy is the behaviour implemented 
by using the state.

• Contrast with explicit-state models, e.g. 
those based on a state monad. 
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Stateful strategies

• Non-innocent strategies directly represent 
stateful computation.

• The state itself is implicit: what we see in 
the strategy is the behaviour implemented 
by using the state.

• Contrast with explicit-state models, e.g. 
those based on a state monad. 

this idea was first 
explored by Uday Reddy 

(1993)
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Idealised Algol

• Reynolds’s Idealised Algol is a prototypical 
higher-order imperative programming 
language

IA = PCF + assignable 
variables + block 

structure
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Idealised Algol

• Reynolds’s Idealised Algol is a prototypical 
higher-order imperative programming 
language

IA = simple while 
programs + block 

structure + λ-calculus
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Idealised Algol

• Types:   A :: = comm | exp | var | A → A

• Terms:  M ::= PCF | x:= M | !x | M ; M

                 |   new x in M

71



Commands and 
variables

• To interpret commands and variables, we 
can no longer rely on the analogy with 
normal-form trees.

• We have to do some semantics! 

• Consider the observable actions available 
for each type, and build an appropriate 
arena.
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Commands
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• With no explicit store, what can we 
observe of a command?
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Commands

• With no explicit store, what can we 
observe of a command?

• We can try to run it: “run”

• We will notice when it terminates: 
“done”.

• That’s all.

r

d
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Sequential composition
comm → comm → comm

r
r
d

r
d

d
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Variables

• Variables are more complex:

• we can try to read a value, and get 
something back

• we can try to store a value; this is like a 
command, so we just observe 
termination.

75



Variables

write(true) write(false) read

true falseok ok

76



Assignment
var  →  exp → comm

rq

a

write(a)

ok

d
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Example
x: var,      y: var     ⊢ x := not (!y) : comm
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x: var,      y: var     ⊢ x := not (!y) : comm

r
read

b
write(not b)

ok

d
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Another example
c:comm,  x: var ⊢ x:=true; c; x := not(!x) : comm
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Another example
c:comm,  x: var ⊢ x:=true; c; x := not(!x) : comm
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read
b

write(true)

ok
r

d

write(not b)

doesn’t have to be 
“true”
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Another example
c:comm,  x: var ⊢ x:=true; c; x := not(!x) : comm

r

read
b

write(true)

ok
r

d

write(not b)
ok

doesn’t have to be 
“true”
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Another example
c:comm,  x: var ⊢ x:=true; c; x := not(!x) : comm

r

read
b

write(true)

ok

d

r

d

write(not b)
ok

doesn’t have to be 
“true”
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Bad variable behaviour

• Why don’t we try to restrict plays so that 
the b in the previous example is always 
“true”? 

80



Bad variable behaviour

• Why don’t we try to restrict plays so that 
the b in the previous example is always 
“true”? 

• The command c could later become bound 
to something that alters x, so it is vital to 
allow the read to return any value. 

80



Local variable 
behaviour

• If we wrap the term in a variable allocation

new x in x:=true; c; x := not(!x)

it is no longer possible for c to alter x.

• The variable x becomes a good variable.

• It also becomes hidden: the environment 
should not know it is there.
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Variable allocation

• The command new x in M is just like M, but:

• x is bound to a storage cell, so M’s 
interactions with x should be variable-
like.

• the outside world should no longer see x.

• How can we model this? Interaction plus 
hiding!

82



A cell strategy
(var → comm) → comm 

r
r

d

d

⋮
s
⋮
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A cell strategy
(var → comm) → comm 

r
r

d

d

⋮
s
⋮

any “good” sequence of 
reads and writes
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Allocation in action
(var → comm) 

r

d

read
true

write(true)

ok

write(false)

ok

r

d

 → comm
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Allocation in action
(var → comm) 

r

d

read
true

write(true)

ok

write(false)

ok

r

d

 → comm

answering “true” 
here requires non-

innocence
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Allocation in action
comm →

r
d

(var → comm) 

r

d

read
true

write(true)

ok

write(false)

ok
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Allocation in action
comm

r
d

r

d

 comm→ (var → comm) 

r

d

read
true

write(true)

ok

write(false)

ok

→ →
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Allocation in action
comm

r
d

r

d

 comm→
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Allocation in action
comm

r

d

r

d

 comm→
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Allocation in action
comm

r

d

r

d

 comm→

The internal interaction went as expected, 
and now it is invisible.
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A remark

• In this model, only variable allocation 
requires a non-innocent strategy: terms 
without new x in ... are interpreted 
innocently. 

• This is a marked difference from explicit 
state models, where assignment and lookup 
operations access the state. 
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Definability?

• We have a model of Idealised Algol, and we 
can prove that it is sound.

• Does it have the definability property?
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Visibility

• Our non-innocent strategies are very 
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
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Visibility

• Our non-innocent strategies are very 
powerful. E.g.:
(A → (A → comm) →comm) → comm

r
r

r

q

q

d

• No Idealised Algol program has this 
behaviour.
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Visibility

• Our non-innocent strategies are very 
powerful. E.g.:

• No Idealised Algol program has this 
behaviour.

89



Visibility

• To eliminate this strategy, we impose a new 
constraint: visibility.

• A play s satisfies P-visibility if, for every prefix 
tm where m is a P-move, the justifier of m 
is in view(t).

• (All plays in innocent strategies satisfy this 
automatically.)
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Visibility
(A → (A → comm) →comm) → comm

r
r

r
d

q

q
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Visibility
(A → (A → comm) →comm) → comm

r
r

r
d

q

q
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Visibility
(A → (A → comm) →comm) → comm

r
r

r
d

q

q

Eliminating such plays lets us recover definability. 
But how to prove it?
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Proving definability

• We cannot directly use the same approach 
as in the innocent case: strategies no longer 
correspond to λ-terms. 

• We can reduce the problem to the innocent 
case. 
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Factorization
Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible 
strategy on A → comm is of the 
form σ ; cell for some innocent σ : 
A → (var →comm). 
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Factorization
Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible 
strategy on A → comm is of the 
form σ ; cell for some innocent σ : 
A → (var →comm). 

Proof: innocently 
simulate the non-innocent 

strategy by storing the 
history in the cell. 
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Factorization

• Definability for innocent strategies works as 
usual.

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible 
strategy on A → comm is of the 
form σ ; cell for some innocent σ : 
A → (var →comm). 
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Factorization

• Definability for innocent strategies works as 
usual.

• If M is a term defining σ, then new x in M defines 
σ ; cell. 

Theorem [Abramsky + M 1996]
Every well-bracketed, P-visible 
strategy on A → comm is of the 
form σ ; cell for some innocent σ : 
A → (var →comm). 

93



Another definability 
result

Theorem [Abramsky + M 1996]
Every finite, well-bracketed, P-
visible strategy on A → comm is 
definable by a term of Idealised 
Algol.
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Definability for 
Idealised Algol

IA 
programs

Well-bracketed, 
visible strategies
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Another definability 
result?

Probably a theorem that I don’t 
think anyone has actually 
bothered to prove
Every finite (not necessarily well-
bracketed) P-visible strategy on A → 
comm is definable by a term of Idealised 
Algol + callcc. 

96



5. Beyond visibility: more 
state
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What can general 
strategies express?

• I am afraid I can no longer pretend to make 
the progression seem logical: I’ll just have to 
tell you.

• Strategies that may break visibility 
correspond exactly to programs with higher 
order store. 

98



Ground vs higher order 
store

• Because ground-type data can be 
completely evaluated, assignment was easy 
to interpret.

var  →  exp → comm
rq

a

write(a)

ok

d
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Ground vs higher order 
store

• Because ground-type data can be 
completely evaluated, assignment was easy 
to interpret.

var  →  exp → comm
rq

a

write(a)

ok

d

fully evaluate the exp 
before assigning
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Ground vs higher order 
store

• How could we do this for a general type A?

var[A]  →  A → comm
r

q

q’
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Ground vs higher order 
store

• How could we do this for a general type A?

var[A]  →  A → comm
r

q

q’

this is a non-final O-
move; what on earth 
should we do now?
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What is var[A] anyway?

• How can we store a program of type A in a 
variable?

• We can hardly have a move 

write(σ)

where σ is a strategy. 
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var take two

• An alternate var type, for ground data, is 
given by 

exp ⨉ (exp → comm)

• Think of this as the product of

• the “read method”, returning an exp

• the “write method”, taking an exp and 
returning the assignment command
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Definability again

• This gives another way to interpret Idealised 
Algol, and we can obtain another definability 
result. 

• Perhaps this version of var will generalise to 
arbitrary types? Define

var[A] = A ⨉ (A → comm).
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Assignment and lookup 

• The type for the assignment constant is now

(A ⨉ (A → comm))  →  A → comm

• Now it’s easy to interpret, using projection. 

• Lookup is similarly simple: just use the other 
projection

(A ⨉ (A → comm))  →  A
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A cell strategy?

• How can we implement a cell strategy of 
type

(var[A] → comm) → comm ?
r

r

d

d

⋮
s
⋮
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A cell strategy?

• How can we implement a cell strategy of 
type

(var[A] → comm) → comm ?
r

r

d

d

⋮
s
⋮

what is a  “good” 
sequence in this game?
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cells
(A ⨉ (A → comm) → comm) → comm

r
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cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d
r
d

copycat
q

r

r

r

q
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cells
(A ⨉ (A → comm) → comm) → comm

r
d
r
d
r
d

copycat
q

r

r

r

q
 P breaks visibility 

here.
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Factorization again
Theorem (approx) 
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a 
type A → comm is of the form σ ; celln 
for some P-visible 
σ : A → (var[comm]n →comm). 
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Factorization again
Theorem (approx) 
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a 
type A → comm is of the form σ ; celln 
for some P-visible 
σ : A → (var[comm]n →comm). Proof: turn 

all the violations of P-
visibility into violations of 
O-visibility performed by 

the cell.
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Factorization again
Theorem (approx) 
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a 
type A → comm is of the form σ ; celln 
for some P-visible 
σ : A → (var[comm]n →comm). 

107



Factorization again
Theorem (approx) 
[Abramsky, Honda,M 1998]
Every finite well-bracketed strategy on a 
type A → comm is of the form σ ; celln 
for some P-visible 
σ : A → (var[comm]n →comm). 

This means that arbitrary well-bracketed 
strategies can be expressed as a composition 
of cells storing comm and boolean types. 

107



Definability again

• Our cell strategies allow us to interpret a 
language where terms of any type can be 
stored in the variables.

• The factorization result means that we have 
a definability result once more: every finite 
strategy is the denotation of some term in 
this language. 
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Literature note 3:

• Laird has shown how the ideas at play here 
can be expressed algebraically, in terms of 
his sequoidal categories.

• Laird, A Categorical Semantics of Higher-Order 
Store, CTCS 2002.
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Definability for Higher-
Order Store

Programs 
with ho-

store

Well-bracketed  
strategies
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Closing remarks
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Conditions classify 
programs

λ-calculus

PCF

PCF+callcc

Idealised Algol

Higher-type Store

finite, total, innocent

innocent, P-bracketed

innocent

P-bracketed, P-visible

P-bracketed
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O is unconstrained

• Our behavioural constraints have all been 
expressed as conditions on strategies.

• O is free to behave as he wishes.

• This means it makes sense to allow, e.g., a 
PCF term to interact in an IA context.
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Full abstraction

• In each case, we can lift our full completeness 
(definability) result to a full abstraction result 
by means of a quotient: 

σ≈τ:A if and only if for all α:A→comm, 
σ;α=τ;α.

In the case of the imperative languages, this 
quotient can be defined directly. 
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Fin
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