
Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Algebraic Effects

Gordon Plotkin

Laboratory for the Foundations of Computer Science, School of Informatics,
University of Edinburgh

CIRM, Marseille, February, 2012

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Outline

1 Moggi’s Monads As Notions of Computation

2 Algebraic Effects
Introduction
Equational theories

Finitary equational theories
Algebra with parameterised operations
Algebra with parameters and parametric arguments
Algebraic operations and generic effects

Continuous algebra

3 Discussion

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Outline

1 Moggi’s Monads As Notions of Computation

2 Algebraic Effects
Introduction
Equational theories

Finitary equational theories
Algebra with parameterised operations
Algebra with parameters and parametric arguments
Algebraic operations and generic effects

Continuous algebra

3 Discussion

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

The λ-calculus: syntax

Raw Syntax

Types σ ::= σ → τ

Terms M ::= x | λx : σ.M | MN

Typing

Environments Γ ::= x1 : σ1, . . . , xn : σn

Judgments Γ ` M : σ

Rules Γ,x :σ`M:τ
Γ`λx :σ.M:σ→τ

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

The λ-calculus: semantics in Set

Types [[σ]] ∈ Set

[[σ → τ]] = [[σ]]⇒ [[τ]]

Environments [[x1 : σ1, . . . , xn : σn]] = [[σ1]]× . . .× [[σn]]

Terms [[Γ]]
[[M]]−−−−→ [[τ]]

[[Γ]]
[[λx :σ.M]]−−−−−−−→ [[σ → τ]] = Curry([[Γ, x : σ]]

[[M]]−−−−→ [[τ]])

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Adding recursion to the λ-calculus

Given
f : σ → τ, x : σ ` M : τ

we would like to define f by:

f (x) = M

So we introduce a term for making such definitions:

rec f : σ → τ, x : σ.M

Γ, f : σ → τ, x : σ. ` M : τ

Γ ` rec f : σ → τ, x : σ.M : σ → τ

For the semantics we use cpos.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Recap on Cpo

A cpo P is a partial order with lubs
∨

n xn of increasing
sequences x0 ≤ x1 ≤ . . . xn ≤ . . .
A function f : P → Q between cpos is continuous if it is
monotone and preserves lubs of increasing sequences, ie:

f (
∨
n

xn) =
∨
n

f (xn)

P ⇒ Q is the cpo of all such functions, ordered pointwise:

f ≤ g ≡ ∀x ∈ P. f (x) ≤ g(x)

P ×Q is also a cpo if ordered coordinatewise:

(x , y) ≤ (x ′, y ′) ≡ x ≤ x ′ and y ≤ y ′

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Pointed cpos

A cpo P is pointed if it has a least element ⊥ when it is a
cppo (and P → Q is pointed if Q is).
Every continuous endofunction f on a cppo D has a least
(pre-)fixed point, given by:

fix(f) =
∨
n

f n(⊥)

Every f : P × D → D has a parameterised fixed-point

f † : P → D =def x ∈ P 7→ fix(f (x , ·))

Every cpo P can be lifted to form a cppo P⊥ = P ·∪ {⊥}
with a new least element.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

The λ-calculus: semantics in Cpo

Types [[σ]] ∈ Cpo

[[σ → τ]] = [[σ]]⇒ [[τ]]⊥

Environments [[x1 : σ1, . . . , xn : σn]] = [[σ1]]× . . .× [[σn]]

Terms [[Γ]]
[[M]]−−−−→ [[τ]]⊥

[[Γ]]
[[λx :σ.M]]−−−−−−−→ [[σ → τ]] = Curry([[Γ, x : σ]]

[[M]]−−−−→ [[τ]]⊥)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

The λ-calculus: semantics in Cpo: recursion

From
Γ, f : σ → τ, x : σ. ` M : τ

we have, successively:

[[Γ]]× [[σ → τ]]× [[σ]]
[[M]]−−−−→ [[τ]]

[[Γ]]× [[σ → τ]]
Curry([[M]])−−−−−−−−→ [[σ → τ]]

[[Γ]]
Curry([[M]])†−−−−−−−−−→ [[σ → τ]]

which is

[[Γ]]
rec f :σ→τ,x :σ.M−−−−−−−−−−−→ [[σ → τ]]

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Moggi’s insight

Going through the semantics in detail one needs some natural
functions associated to lifting:

Functorial action Cpo(P,Q)
(·)⊥−−−−→ Cpo(P⊥,Q⊥)

This makes lifting a functor

Unit P
η−−→ P⊥

Multiplication (P⊥)⊥
µ−−→ P⊥

and then these make lifting a monad

Strength P ×Q⊥
st−−→ (P ×Q)⊥

and then this makes lifting a strong monad

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Moggi’s insight (cntnd.)

(Other) computational effects can also be modelled by
monadsT , e.g. in Set:

Exceptions Texc(X) = X + E
State S ×X −→ S ×Y can be rewritten as X −→ (S ×Y)S

and Tstate(X) = (S × X)S is a strong monad.
Finite Nondeterminism TSL(X) = F+(X) the collection of
non-empty finite subsets of X .
Continuations Tcont(X) = RRX

and there are many other examples, including combinations,
such as this for state plus exceptions:

T (X) = (S × (X + E))S

In Cpo one has similar examples, generally including lifting to
accommodate recursion, so that T (P) is a cppo, e.g., for state
plus nontermination: T (P) = ((S × P)⊥)S

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Moggi’s computational λ-calculus: semantics in a ccc
C with a strong monad T

Types [[σ]] ∈ C

[[σ → τ]] = [[σ]]⇒ T ([[τ]])

Environments [[x1 : σ1, . . . , xn : σn]] = [[σ1]]× . . .× [[σn]]

Terms [[Γ]]
[[M]]−−−−→ T ([[τ]])

[[Γ]]
[[λx :σ.M]]−−−−−−−→ [[σ → τ]] = Curry([[Γ, x : σ]]

[[M]]−−−−→ T ([[τ]]))

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Outline

1 Moggi’s Monads As Notions of Computation

2 Algebraic Effects
Introduction
Equational theories

Finitary equational theories
Algebra with parameterised operations
Algebra with parameters and parametric arguments
Algebraic operations and generic effects

Continuous algebra

3 Discussion

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Outline

1 Moggi’s Monads As Notions of Computation

2 Algebraic Effects
Introduction
Equational theories

Finitary equational theories
Algebra with parameterised operations
Algebra with parameters and parametric arguments
Algebraic operations and generic effects

Continuous algebra

3 Discussion

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Two questions

So we have a denotational semantics. How about an
operational one?
How do effects arise, i.e., how do we “construct” them in a
programming language?

- Answering the first question immediately leads to the
second.

- Answering that leads to understanding where Moggi’s
monads come from.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

An example: finite nondeterminism

Working in Set we take TSL(X) = F+(X) the collection of
non-empty finite subsets of X .

To create the effects we add an effect constructor:

M : σ N : σ

M + N : σ

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Nondeterminism as an algebraic effect

There is a natural equational theory, with signature + : 2, and
set of axioms SL (for semilattices) given by:

Associativity (x + y) + z = x + (y + z)
Commutativity x + y = y + x
Absorption x + x = x

The evident algebra on F+(X) satisfies these equations,
interpreting + as ∪.
Further:

F+ is the free algebra monad.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Is this the right set of axioms?

An equational theory is equationally inconsistent if it
proves x = y .
An equational theory is Hilbert-Post complete if adding an
unprovable equation makes it equationally inconsistent.

Theorem
ND is Hilbert-Post complete.

Proof.
Let t = u be an unprovable equation, and assume it. Then
there is a variable x in one of t or u, but not in the other.
Equating all the other variables to y one obtains one of the
following two equations: x = y or x + y = y . One obtains x = y
from either of these.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Other effects

Similar results hold in Set for, eg, exceptions, (global)
state; I/O; (probabilistic) nondeterminism; and
combinations thereof.
May need infinitary algebra and parameterised operations.
Works similarly for Cpo but also need inequations t ≤ u.
For other categories there is a general theory (of enriched
Lawvere theories). Problem: categories of presheaves as
applied to the treatment of new variables and fresh names.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Outline

1 Moggi’s Monads As Notions of Computation

2 Algebraic Effects
Introduction
Equational theories

Finitary equational theories
Algebra with parameterised operations
Algebra with parameters and parametric arguments
Algebraic operations and generic effects

Continuous algebra

3 Discussion

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Finitary equational theories: syntax

Signature Σe = (Op, ar : Op→ N). We write op : n for
arities.
Terms t ::= x | op(t1, . . . , tn) (op : n). We leave open
what the set Var of variables is.
Equations t = u
Axiomatisations Sets Ax of equations
Deduction Ax ` t = u
Theories Sets of equations Th closed under deduction

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Addition to λ-calculus syntax

Γ ` M1 : σ, . . . , Γ ` Mn : σ

Γ ` op(M1, . . . ,Mn) : σ
(op : n)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Finitary equational theories: semantics

Algebras A = (A, opA : An −→ A (op : n))

Homomorphisms h : A → B are functions h : A→ B such
that, for all op : n, and a1, . . . ,an ∈ A:

h(opA(a1, . . . ,an)) = opB(h(a1), . . . ,h(an))

Denotation A[[t]](ρ), where ρ : Var→ A.
Validity A |= t = u
Models A is a model of Ax if A |= t = u, for all t = u in Ax.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

The free algebra monad TAx of an axiomatic theory Ax

The free model FAx(X) of Ax over a set X has carrier:

TAx(X) =def {[t]Ax | t is a term with variables in X}

where [t]Ax =def {u | Ax ` u = t}.
Its operations are given by:

opFAx(X)([t]1, . . . , [t]n) = [op(t1, . . . , tn)] (op : n)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Freeness

For any model A of Ax, and any function f : X → A there is a
unique homomorphism f † : FAx(X)→ A such that the following
diagram commutes:

X

f

TAx(X)

η

? f †
- A
-

where η =def x 7→ [x]Ax

Remarks:
1 f †([t]) = A[[t]](f)
2 TAx(X) is a monad with unit η and multiplication (idTAx(X))†.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Another example: exceptions

Given a (possibly infinite) set E of exceptions, the signature has
nullary operation symbols:

raisee (e ∈ E)

The set of axioms Exc is empty, and one obtains the usual
exceptions monad

TExc(X) = X + E

There is then a puzzle: how do exception handlers fit into the
algebraic theory of effects - more later!

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Yet another example: probabilistic computation

We have n-ary operations
∑

n,p1,...,pn
for all n ≥ 0 and n-tuples

of non-negative reals p1, . . . ,pn summing to 1. The set of
axioms Con is

1
∑

i=1,m δ
i
j xi = xj

2
∑

i=1,m pi
∑

j=1,n qijxj =
∑

j=1,n(
∑

i=1,m piqij)xj

where δi
j =

{
1 (if i = j)
0 otherwise

The monad is the set of finite probability distributions over X

TCon(X) = Dω(X) =def {
n∑

i=1

λixi | n ≥ 0, λi ≥ 0,
∑

i

λi = 1}

and the unit is η(x) = δx the Dirac probability distribution on x .
Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Remarks on Con

Con is not HP complete, but its only proper equational
extension is SL, the theory of semilattices (this is a
non-trivial result). These have an associative, commutative
binary operator.
Con can be equivalently axiomatised using probabilistic
choice binary operators +p, for 0 ≤ p ≤ 1. In terms of Con
these operators are defined by:

x +p y = px + (1− p)y

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Parametric finitary equational theories: syntax

First-order multi-sorted signature

Σp = (S,Fun,Pred, arfun : Fun→ S∗ × S, arpred : Pred→ S∗)

Parametric signature

Σe = (Op, arop : Op→ S∗ × N)

Terms
t ::= x | opu1,...,um

(t1, . . . , tn) (op : s1, . . . sm; n and ui : si).
Equations t = u (ϕ) where ϕ is a first-order formula over
Σp.
Axiomatisations Sets Ax of equations
Deduction (an interesting question, not treated here)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Examples

Exceptions Σp has a single sort exc, and constants e : 0 for
each e ∈ E .
Σe has a single operation symbol raise : exc; 0. There are
no equations.
Probability Σp has a single sort real, constants 0,1, binary
function symbols +,×, a unary function symbol −, and a
relation symbol ≤.
Σe has a single binary operation symbol + : real; 2. Here is
an example equation:

+p(x , y) = +1−p(x , y) (0 ≤ p ≤ 1)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Addition to λ-calculus syntax

Types
σ ::= s (s ∈ S) | bool

Terms

M ::= f (M1, . . . ,Mn) (f ∈ Fun) | P(M1, . . . ,Mn) (P ∈ Pred) |
tt | ff | if L then M else N |
opM1,...,Mm

(N1, . . . ,Nn)

Example type-checking rule

Γ ` M1 : s1, . . . , Γ ` Mm : sm, Γ ` N1 : σ, . . . , Γ ` Nn : σ

Γ ` opM1,...,Mm
(N1, . . . ,Nn) : σ

where op : s1, . . . , sm; n

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Parametric finitary equational theories: semantics

Parameter interpretation We fix an interpretationM of Σp.
Algebras With that, a Σe-algebra is a structure

(A, opA :M[[s]]× An → A (op : s; n))

whereM[[s1, . . . , sm]] =def M[[s1]]× . . .M[[sm]].
Homomorphisms are then defined in the evident way.
Denotation A[[t]](ρp, ρe), where ρe : Var→ A. For example

A[[opu1,...,um
(t1, . . . , tn)]](ρp, ρe) =

opA(M[[u1, . . . ,um]](ρp),A[[t1]](ρp, ρe), . . . ,A[[tn]](ρp, ρe))

Validity and Models are then defined in the evident way.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Free algebra theorem

Theorem
Let Ax be a set of parametric Σe-axioms. Then there is a free
model FAx(X) of Ax over any X. That is, there is a
η : X → TAx(X), where TAx(X) is the carrier of FAx(X), such
that for any model A of Ax, and any function f : X → A there is
a unique homomorphism f † : FAx(X)→ A such that the
following diagram commutes:

X

f

TAx(X)

η

? f †
- A
-

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Idea of proof

The idea is to reduce to ordinary equational theories.
For every op : s; n and (a1, . . . ,am) ∈M[[s]] we introduce
an operation symbol fa1,...,am : n.
Then from any parametric term t and ρp we can obtain an
ordinary term tρp . For example:

opu1,...,um
(t1, . . . , tn)ρp = opM[[u1,...,um]](ρp)(tρp

1 , . . . , tρp
n)

Then one obtains a set of ordinary equations from any
parametric equation in Ax, taking all ρp’s.
We know all these ordinary equations have a free model.
That immediately gives a parametric model of Ax with the
same carrier,“gluing” the interpretations of all the fa1,...,am

together. Keeping the same unit, we immediately deduce
parametric freeness from ordinary freeness.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

State treated algebraically

Suppose we have locations which can store natural numbers.
We have natural programming notation for reading and writing:

M : loc
!M : nat

M : loc,N : nat
M := N : unit

But

loc !−−→ nat loc× nat :=−→ unit

do not seem to have much to do with algebra.
Hint: Read “M + N” as “choose 0 or 1 and then do whichever
continuation M or N is appropriate.”
One can read M +p N similarly, but in terms of tossing a biased
coin with head having probability p.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

State treated algebraically (cntnd.)

So for writing we would have an operation, update say, which
writes and then carries on (i.e. has a single continuation). This
suggests:

update : loc, nat; 1

which fits within parametric algebra.
For reading we would have an operation, lookup say, which
reads a location and then carries on with a continuation
depending on the value read. This suggests:

lookup : loc; nat

a parameterised infinitary operation!
So we now look at infinitary algebra and a finitary notation for it.
We will return later to the status of things like ! and := and see
that they form part of a general pattern of generic effects.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Infinitary equational logic: syntax

Signature Σe = (Op, ar : Op→ ω + 1). We write op : n for
arities, including ω.
Terms as in finitary case plus: op(t1, t2, . . . , tn, . . .) (op : ω).
We leave open what the set Var of variables is.
Equations t = u as before
Axiomatisations Sets Ax of equations
Deduction Ax ` t = u an easy variant of the finitary case
Theories Sets of equations Th closed under deduction

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Infinitary equational theories: semantics

Algebras are structures A = (A, opA : An −→ A (op : n)), and
recall that here n can be ω.
Homomorphisms h : A → B are, much as before, functions
h : A→ B such that, for all op : n, and a ∈ An:

h(opA(a)) = opB(h(a))

Denotation A[[t]](ρ) is also defined much as before.
Validity A |= t = u is defined as before.
Models A is also defined as before.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

The free algebra monad TAx of an infinitary axiomatic
theory Ax

All is as before. The free model FAx(X) over a set X has carrier:

TAx(X) =def {[t]Ax | t is a term with variables in X}

where [t]Ax =def {u | Ax ` u = t}; its operations are given by:

opFAx(X)([t]) = [op(t)] (op : n)

the unit η : X → TAx(X) is again x 7→ [x]; for any model A of
Ax, and any function f : X → A the unique mediating
homomorphism f † : FAx(X)→ A is given by:

f †([t]) = A[[t]](f)

and the multiplication is (idTAx(X))†.
Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Notation and equations for state

t ::= updateu1,u2
(t) | lookupu(n : nat. t)

Equations for writing and reading a single location:

updatel,m(updatel,n(x)) = updatel,n(x) (1)

lookupl(m : nat. lookupl(n : nat. x(m,n))) =
lookupl(m : nat. x(m,m)) (2)

lookupl(n : nat. x) = x (3)
updatel,m(lookupl(n : nat. x(n))) = updatel,m(x(m)) (4)

lookupl(n : nat. updatel,n(x)) = x (5)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Notation and equations for state (cntnd)

Commutation Equations for different locations

updatel,m(updatel ′,n(x)) = updatel ′,n(updatel,m(x)) (l 6= l ′) (7)

lookupl(m : nat. lookup′l(n : nat. x(m,n))) =
lookup′l(n : nat. lookupl(m : nat. x(m,n))) (l 6= l ′) (8)

updatel,m(lookup′l(n : nat. x(n))) =

lookup′l(n : nat. updatel,m(x(n))) (9)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Redundancies

Equations (3), and (2) and (8) (Mellies) are redundant.
For example, for (3) we have:

lookupl(n : nat. x) = lookupl(n : nat. updatel,n(lookupl(n : nat. x))) (by (5))

= lookupl(n : nat. updatel,n(x))) (by (4))

= x (by (5))

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Parametric axiom. ths. with abstraction: syntax

First-order multi-sorted signature

Σp = (S,Fun,Pred, arfun : Fun→ S∗×S, arpred : Pred→ S∗,Sa)

with a subcollection Sa ⊆ S of arity sorts
Parametric signature

Σe = (Op, arop : Op→ S∗ × A∗∗)

Terms

Γ,u : s, Γ,x1 : s1 ` t1, . . . , Γ,xn : sn ` tn
Γ ` opu(x1 : s1. t1, . . . ,xn : sn. tn)

(op : s; s1, . . . ,sn)

Equations t = u (ϕ) and axiomatisations Ax are as before,
and deduction remains an interesting question.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Addition to λ-calculus syntax

Types
σ ::= s (s ∈ S) | bool

Terms

M ::= opM(x1 : s1.N1, . . . ,xn : sn.Nn)

Example type-checking rule

Γ ` M : s, Γ,x1 : s1 ` N1 : σ, . . . , Γ,xn : sn ` Nn : σ

Γ ` opM(x1 : s1.N1, . . . ,xn : sn.Nn) : σ

where op : s; s1, . . . ,sm

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Parametric axiom. ths. with abstraction: semantics

Parameter interpretation We fix an interpretationM of Σp,
such thatM[[s]] is countable for all s ∈ Sa.
Algebras With that, a Σe-algebra is a structure

(A, opA :M[[s]]×AM[[s1]]×. . .×AM[[sn]] → A (op : s; s1, . . . ,sn))

Denotation A[[t]](ρp, ρe), where ρe : Var→ A. For example

A[[opu(x1 : s1. t1, . . . ,xn : sn. tn)]](ρp, ρe) =
opA(M[[u]](ρp), ϕ1, . . . , ϕn)

where:

ϕi(ai) =def A[[ti]](ρp[a/xi], ρe) (i = 1,n, ai ∈M[[si]])

Homomorphisms, Validity and Models are defined in the
evident way.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Free algebras, etc.

As usual, there is a free algebra FAx(X) over any set X ,
which induces the corresponding monad TAx(X).
The proof is by a (now) evident reduction to (countably)
infinitary equational logic.
Restricting the denotations of arity types to be finite still
covers many situations, e.g., locations storing bits or
words. Thus abstraction can be useful even in the finitary
case.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Side effects

First order part The sorts are loc,nat, and there is a
predicate symbol =: loc, loc. We assumeM[[=]] is equality,
M[[loc]] is finite, andM[[nat]] = N. Set Loc =def M[[loc]].
Axioms AxS is as above.
Monad TS(X) = (S × X)S, where S =def NLoc

Operations

Lookup Loc× TS(X)N
lookupFS (X)

−−−−−−−→ TS(X) is defined by:

lookupFS(X)(l , ϕ) = σ 7→ ϕ(σ(l))

Update Loc× N× TS(X)
updateFS (X)

−−−−−−→ TS(X) is defined by:

updateFS(X)(l ,n, γ) = σ 7→ γ(σ[n/l])

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Another example: interactive I/O

First-order part The sorts are in, out; rest, includingM, as
suits the purpose at hand.
Operation symbols input : ε; in and output : out; 1
Axioms None!
Monad TI/O(X) is the least set Y such that:

Y = YM[[in]] + (M[[out]]× Y) + X

and we just write:

TI/O(X) = µY .YM[[in]] + (M[[out]]× Y) + X

TI/O(X) is a collection of trees. Its internal nodes are either
input ones, when they have anM[[in]]-indexed collection of
children, or output nodes, when they have anM[[out]] label
and one child. Its leaves have an X label.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

I/O cntnd.

Operations

Input TI/O(X)M[[in]]
inputFI/O (X)

−−−−−−−→ TI/O(X) is defined by:

inputFI/O(X)(ϕ) = in1(ϕ)

OutputM[[out]]×TI/O(X)
outputFI/O (X)

−−−−−−−→ TI/O(X) is defined by:

outputFI/O(X)(d , γ) = in2(d , γ)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

The general case, when there are no axioms

We have:

TI/O(X) = µY .
∑

op:s;s1,...,sn

(M[[s]]× YM[[s1]]×...×M[[sn]]) + X

We again have a collection of trees. The internal nodes are
M[[s]]-labelled and have anM[[s1]]× . . .×M[[sn]]-indexed
collection of children. As before, the terminal nodes are
X -labelled.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Algebraic operations

Fix a finitary equational axiomatic theory Ax. Then for any set
X and operation symbol op : n we have the function:

TAx(X)n opFAx(X)−−−−−−→ TAx(X)

Further for any function f : X → TAx(Y), f † is a homomorphism:

TAx(X)n
opFAx(X)- TAx(X)

=

TAx(Y)n

(f †)n

?

opFAx(Y)

- TAx(Y)

f †

?

We call such a famiy of functions TAx(X)n ϕX−−→ TAx(X) algebraic.
Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Generic effects

Given an algebraic family TAx(X)n ϕX−−→ TAx(X), regarding n
as {0, . . . ,n − 1}, we obtain the generic effect:

e ∈ TAx(n) = ϕn(ηn)

Given e ∈ TAx(n) we obtain such an algebraic family by
setting:

ϕX =def TAx(X)n (·)†−−→ TAx(X)TAx(n) · (e)−−−−→ TAx(X)

This correspondence is a bijection between algebraic
families and generic effects.
Noting that TAx(X)n is the collection of (equivalence
classes) of terms with n free variables, we see (following
the above definition) that the algebraic families are exactly
the definable ones.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Examples

Nondeterminism Corresponding to + we have:

arb ∈ TSL({0,1}) = {0,1}

which can be thought of as the (equivalence class of) the
term x + y .
Probabilistic nondeterminism Corresponding to + we have:

coinp ∈ TSL({0,1}) = pδ0 + (1− p)δ1

which can be thought of as the (equivalence class of) the
term x +p y .
Exceptions Roughly raisee : 0 is its own generic effect.
Precisely, to the family (raisee) ·+E : 1 = (X + E)0 → X + E
corresponds inr(e) ∈ ∅+ X , which we can identify as e.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Algebraic operations, more generally
Fix a parametric equational axiomatic theory with abstraction Ax, and
modelM. Then for any set X and operation symbol op : s; s1, . . . ,sm
we have the function:

M[[s]]× TAx(X)M[[s1]] × . . .× TAx(X)M[[sn]]
opFAx(X)−−−−→ TAx(X)

Further for any function f : X → TAx(Y), f † is a homomorphism:

M[[s]]× TAx(X)M[[s1]] × . . .× TAx(X)M[[sn]]
opFAx(X)- TAx(X)

=

M[[s]]× TAx(Y)M[[s1]] × . . .× TAx(Y)M[[sn]]

idM[[s]] × (f †)M[[s1]] × . . .× (f †)M[[sn]]

?

opFAx(Y)

- TAx(Y)

f †

?

We again call such a family of functions ϕX algebraic.
Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Generic effects, more generally

Given an algebraic family

M[[s]]× TAx(X)M[[s1]] × . . .× TAx(X)M[[sn]] ϕX−−→ TAx(X)

equivalently: M[[s]]× TAx(X)M[[s1]]+...+M[[sn]] ϕX−−→ TAx(X)
we obtain the generic effect:

M[[s]]
e−−→ TAx(M[[s1]] + . . .+M[[sn]]) = ϕ∑

iM[[si]](· , η∑iM[[si]])

Given such an e we obtain such an algebraic family:

M[[s]]× TAx(X)
∑

iM[[si]]
idM[[s]]×(·)†
−−−−−−−→ M[[s]]× TAx(X)TAx(

∑
iM[[si]])

e×id−−−−→ TAx(
∑

iM[[si]])× TAx(X)TAx(
∑

iM[[si]])

ev−−−→ TAx(X)

This correspondence is a bijection between algebraic families
and generic effects.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

An example: side-effects

Lookup The generic effect corresponding to

Loc× TS(X)N
lookupFS (X)

−−−−−−−→ TS(X)

is
Loc !−−→ TS(N) = (S × N)S

where !(l) = σ 7→ (σ, σ(l))

Update The generic effect corresponding to

Loc× N× TS(X)
updateFS (X)

−−−−−−→ TS(X)

is
Loc × N :=−−−→ TS(1)

where := (l , v) = σ 7→ (σ[l/n], ∗)
Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Another example: interactive I/O

Input The generic effect corresponding to

TI/O(X)M[[in]]
inputFI/O (X)

−−−−−−−→ TI/O(X)

is
myread ∈ TI/O(M[[in]])

where
myread = in1(d ∈M[[in]] 7→ in3(d))

Output The generic effect corresponding to

M[[out]]× TI/O(X)
outputFI/O (X)

−−−−−−−→ TI/O(X)

is
M[[out]] write−−→ TI/O((1)

where write(d) = in3(d , ∗)
Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Programming counterpart of being algebraic

Evaluation contexts are given by:

E ::= [·] | EN | (λx : σ.M)E

For any operation symbol op : n we have:

|= E [op(M1, . . . ,Mn)] = op(E [M1], . . . , E [Mn])

For example,

|= (M +p M ′)N = (MN) +p (M ′N)

More generally, for any operation symbol op : s; s1, . . . ,sm
we have:

|= E [opM(x1 :s1.N1, . . . ,xn :sn.Nn)]=opM(x1 :s1. E [N1], . . . ,xn :sn. E [Nn])

assuming variable clashes are avoided.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Outline

1 Moggi’s Monads As Notions of Computation

2 Algebraic Effects
Introduction
Equational theories

Finitary equational theories
Algebra with parameterised operations
Algebra with parameters and parametric arguments
Algebraic operations and generic effects

Continuous algebra

3 Discussion

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Example (in)equational theory: nontermination

The axiomatic theory AxΩ has a constant Ω and one axiom for
it:

Ω ≤ x

The free-algebra monad is just lifting: T (P) = P⊥

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Another example: nondeterminism

As before we have a binary operation symbol op and the
axioms SL of a semilattice. This is not order-HP complete but
has two order-consistent extensions, given by these two
axioms, respectively:

x ≤ x + y

x ≥ x + y

The two axiomatic theories are called SLl and SLu. The free
continuous algebra for SL is the convex (aka Plotkin)
powerdomain; that for SLl is the lower (aka Hoare)
powerdomain and that for SLu is the upper (aka Smyth)
powerdomain.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Finitary inequational theories: syntax

Signature and terms are as before.
Inequations t ≤ u
Axiomatisations Sets Ax of equations, as before.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Finitary inequational theories: semantics

Algebras A = (A, opA : An −→ A (op : n)) as before,
except that A is a cpo and the opA are continuous.
Homomorphisms as before, but assumed to be continuous.
Denotation, validity, as before.
Models A is a model of Ax if A |= t ≤ u, for all t = u in Ax.
Free models The free model FAx(P) of Ax over a cpo P
always exists. TAx is strong (and has just one strength). In
case Ax includes AxΩ the free model has a least element.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Parametric finitary inequational theories: syntax

First-order multi-sorted signature and parametric signature
are as before.
Inequations t ≤ u (ϕ) where ϕ is a first-order formula over
Σp.
Axiomatisations as before.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Parametric finitary inequational theories: semantics

Parameter interpretation We fix an interpretationM of Σp,
allowing the denotations of sorts to be cpos, the
denotations of function symbols are required to be
continuous, and that of predicate symbols to be mediated
by continuous functions.
Algebras Σe-algebras and homomorphisms are as before,
but again imposing continuity.
Denotation, validity, and models are then defined in the
evident way.
Free models again exist (not by a reduction to the previous
case) and the monad is strong and includes bottom if AxΩ

is included in Ax.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Parametric axiom. ineq. ths. with abstraction

First-order multi-sorted signature with a subcollection
Sa ⊆ S of arity sorts, as before. Parametric signature and
terms as before.
Equations t ≤ u (ϕ); then axiomatisations Ax as before.

Parameter Interpretation As before, allowing cpos,
imposing continuity, but now asking that arity sorts denote
countable discrete cpos.
Algebras, denotation, homomorphisms, validity, and
models are defined in the evident way, imposing continuity.
Free models again exist (e.g., by a reduction to countably
infinitary continuous algebras with continuous parameters)
and the monad is strong and includes bottom if AxΩ is
included in Ax.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Some examples

Exceptions + Ω T (P) = (P + E)⊥
State + Ω T (P) = (S × P)S

⊥
I/O + Ω T (P) = the initial cpo Q such that:

Q ∼= (QM[[in]] + (M[[out]]×Q) + P)⊥

and we just write:

TI/O(P) = µQ.QM[[in]] + (M[[out]]×Q) + P

As a set, TI/O(P) is a collection of trees. Its internal nodes
are either input ones, when they have anM[[in]]-indexed
collection of children, or output nodes, when they have an
M[[out]] label and one child. Its leaves are labelled by
either a P element or else by Ω.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Introduction
Equational theories
Continuous algebra

Algebraic families and generic effects

The theory of these proceeds exactly analogously to before,
now imposing the expected continuity conditions. No general
assertions about definability are made as we have given no
general pictures of the monads that arise, even for finitary
equational theories, without parameters.

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Outline

1 Moggi’s Monads As Notions of Computation

2 Algebraic Effects
Introduction
Equational theories

Finitary equational theories
Algebra with parameterised operations
Algebra with parameters and parametric arguments
Algebraic operations and generic effects

Continuous algebra

3 Discussion

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Remarks on generality

Moving from Set to Cpo was tedious, and one fears the next
case (presheaves, or presheaves over Cpo).

Much of the theory can be developed generally for a category V
(such as Set or Cpo) locally countably presentable as a
cartesian closed category. One replaces equational theories
with V-enriched Lawvere theories.These latter correspond
exactly to strong monads on V with countable rank.

However, for programming and logic, one still needs syntax so
one in any case needs eventually to get concrete.

Of course, to do all this one has to get to grips with enrichment
and Lawvere theories.....

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Is there a “logical” treatment of computational effects?

That is, as it seems, is there a treatment of computational
effects following the Curry-Howard propositions-as-types view?

Cartesian closed categories with a monad correspond to
intuitionistic ∧ and ⊃ and a modality O (Fairtlough &
Mendlers’ lax logic), and, as a type theory, Moggi’s
computational metalanguage.
But this is too external. Just taking Moggi’s computational
λ-calculus, one would get a strange (categorical) logic.
Looking at Levy’s CBPV seems like an interesting
possibility. There are then two kinds of propositions, one
corresponding to values, and one to computations. (This
may remind one of polarised linear logic.)

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Is there a “logical” treatment of computational effects
(cntnd.)?

But how would effect constructors (see below) fit within such a picture?
In the lax setting, to each generic

e : P → T (I1 + . . .+ In)

one could associate an axiom

P ⇒ O(I1 ∨ . . . ∨ In)

.But for the proof-theoretic interpretation one would need to inject the
relevant equivalences between proofs which would come from the
equational axioms. So one feels little would be gained.

Perhaps there is just some other Curry-Howard way altogether of
thinking about effects – or at least some particular effects (other than
continuations).

Plotkin Algebraic Effects

Moggi’s Monads As Notions of Computation
Algebraic Effects

Discussion

Some things that have been done so far

Calculi with effects, such as λc and CBPV. (Moggi; Levy; Egger,
Mogelberg & Simpson)

X (Moderately) general operational semantics. May not always get
expected op. sems., eg, state. (Plotkin & Power; Power & Shkaravska)
Work on general notions of observation and full abstraction. (Johann,
Simpson & Voigtländer)

X Theory, and application, of effect deconstructors, such as exception
handlers via not necessarily free algebras. (Plotkin & Pretnar; Plotkin &
van Glabbeek)

X Combining monads in terms of combining theories, primarily sum and
tensor. (Hyland,Plotkin & Power)
Work on combining algebraic effects with continuations which are not
algebraic and require special treatment. (Hyland, Levy, Power & Plotkin)
First thoughts on a general logic of effects; connects with modal logic.
Does not give Hoare logic. (Plotkin & Pretnar)

X Type and effect systems. (Kammar & Plotkin,Katsumata)
Work on locality and effects (Melliès; Plotkin & Power; Power; Staton).

Plotkin Algebraic Effects

	Moggi's Monads As Notions of Computation
	Algebraic Effects
	Introduction
	Equational theories
	Continuous algebra

	Discussion

