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Logic Physics

Like physics, logic should be the description of a material event...
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The logical phenomenon

What is the topological structure of a dialogue?
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The basic symmetry of logic

The discourse of reason is symmetric between Player and Opponent

Claim: this symmetry is the foundation of logic

Next question: can we reconstruct logic from this basic symmetry?
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The microcosm principle

SIMPLY SHUT UP !!!

No contradiction (thus no formal logic) can emerge in a tyranny...
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A microcosm principle in algebra
[Baez & Dolan 1997]

The definition of a monoid

M × M −→ M

requires the ability to define a cartesian product of sets

A , B 7→ A × B

Structure at dimension 0 requires structure at dimension 1
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A microcosm principle in algebra
[Baez & Dolan 1997]

The definition of a cartesian category

C × C −→ C

requires the ability to define a cartesian product of categories

A , B 7→ A ×B

Structure at dimension 1 requires structure at dimension 2
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A similar microcosm principle in logic

The definition of a cartesian closed category

C op
× C −→ C

requires the ability to define the opposite of a category

A 7→ A op

Hence, the “implication” at level 1 requires a “negation” at level 2
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An automorphism in Cat

The 2-functor
op : Cat −→ Cat op(2)

transports every natural transformation

θ
��

C

F
!!

G

== D

to a natural transformation in the opposite direction:

C op
F op

!!

G op

== D op
θ op
KS

−→ requires a braiding on V in the case of V -enriched categories
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Chiralities

A symmetrized account of categories
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From categories to chiralities

A slightly bizarre idea emerges in order to reflect the symmetry of logic:

decorrelate the category C from its opposite category C op

So, let us define a chirality as a pair of categories (A ,B) such that

A � C B � C op

for some category C .

Here � means equivalence of category
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Chirality

More formally:

Definition:

A chirality is a pair of categories (A ,B) equipped with an equivalence:

A

(−)∗

##equivalence

∗(−)

dd B op
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Chirality homomorphisms

Definition. A chirality homomorphism

(A1,B1) −→ (A2,B2)

is a pair of functors

F• : A1 −→ A2 F◦ : B1 −→ B2

equipped with a natural isomorphism

A1
F• //

(−)∗

��

F̃

A2

(−)∗

����

B
op
1 F op

◦

//B
op
2
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Chirality transformations

Definition. A chirality transformation

θ : F ⇒ G : (A1,B1) −→ (A2,B2)

is a pair of natural transformations

θ•
��

A1

F•
!!

G•

?? A2 B1

F◦
!!

G◦

?? B2θ◦

KS
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Chirality transformations

satisfying the equality

θ•
��

A1

F•
((

G•

66

(−)∗

��

A2

(−)∗

��
G̃

�B

op
1

G op
◦

55B
op
2

=

A1

F•
((

(−)∗

��

A2

(−)∗

��

F̃
	�

θ
op
◦

��

B
op
1

F op
◦

((

G op
◦

66
B

op
2
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A technical justification of symmetrization

Let Chir denote the 2-category with

B chiralities as objects

B chirality homomorphism as 1-dimensional cells

B chirality transformations as 2-dimensional cells

Proposition. The 2-category Chir is biequivalent to the 2-category Cat.
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Cartesian closed chiralities

A symmetrized account of cartesian closed categories
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Cartesian chiralities

Definition. A cartesian chirality is a chirality

B whose category A has finite products noted

a1 ∧ a2 true

B whose category B has finite sums noted

b1 ∨ b2 false
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Cartesian closed chiralities

Definition. A cartesian closed chirality is a cartesian chirality

(A ,∧, true) (B,∨, false)

equipped with a pseudo-action

∨ : B × A −→ A

and a bijection

A (a1 ∧ a2, a3) � A (a1, a
∗

2 ∨ a3)

natural in a1, a2 and a3.

Once symmetrized, the definition of a ccc becomes purely algebraic
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Dictionary

The pseudo-action

∨ : B × A −→ A

reflects the functor

⇒ : C op
× C −→ C

The isomorphisms defining the pseudo-action

(b1 ∨ b2) ∨ a � b1 ∨ (b2 ∨ a) false ∨ a � a

reflect the familiar isomorphisms

(x1 × x2)⇒ y � x1⇒ (x2⇒ y) 1⇒ x � x
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Dictionary continued

The isomorphism

A (a1 ∧ a2, a3) � A (a2, a
∗

1 ∨ a3)

reflects the familiar isomorphism

A (x × y, z) � A (y, x⇒ z)

Note that the isomorphism

(a1)∗ ∨ a2 � a1⇒ a2

deserves the name of classical decomposition of the implication...
although we are in a cartesian closed category!
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Dictionary continued

So, what distinguishes classical logic from intuitionistic logic...
are not the connectives themselves, but their algebraic structure.

Typically, the disjunction ∨ is:

B a pseudo-action in the case of cartesian closed chiralities,

B the cotensor product M in the case of ∗-autonomous categories.
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Cartesian closed chirality [in Krivine style]

Definition. A cartesian closed chirality is a chirality

(A ,∧, true) B

where A has finite products, equipped with a pseudo-action

∧ : A × B −→ B

and a bijection

〈a1 ∧ a2, b〉 � 〈a1, a2 ∧ b〉

natural in a1, a2 and b where

〈a, b〉 = A (a, ∗b)
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Cartesian closed chirality [in Krivine style]

Definition. A cartesian closed chirality is a chirality

(Λ,×, true) Π

where Λ has finite products, equipped with a pseudo-action

• : Λ × Π −→ Π

and a bijection

〈a1 × a2, b〉 � 〈a1, a2 • b〉

natural in a1, a2 and b, where

〈a, b〉 = Λ(a, ∗b).
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Stack is the hacker’s name for action

Given a pseudo-action

• : Λ × Π −→ Π

every object of the category Π

b

every sequence of objects of the category Λ

a1 , . . . , an

define an object of the category Π

a1 • . . . • an • b

Here, the object b should be seen as the bottom of the stack
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A few observations

B Symmetrization does not need classical logic

B After symmetrization, the definition of a ccc becomes “algebraic”

B The equivalence A � B op may be easily relaxed.
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Dialogue categories

A type-theoretic approach to game semantics
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Tensorial logic

tensorial logic = a logic of tensor and negation

= linear logic without A � ¬¬A

= the syntax of linear continuations

= the syntax of dialogue games

A tentative synthesis of linear logic and game semantics

Motivation: think of Guy’s dialogue strategies as tensorial proof-nets
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Six primitive components of logic

[1] the negation ¬

[2] the linear conjunction ⊗

[3] the sum ⊕

[4] the repetition modality !

[5] the existential quantification ∃

[6] the least fixpoint µ

Logic = Data Structure + Duality
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Tensorial logic

Axiom A ` A
Γ ` A Υ1,A,Υ2 ` B

Υ1,Γ,Υ2 ` B
Cut

Right ⊗ Γ ` A ∆ ` B
Γ,∆ ` A ⊗ B

Υ1,A,B,Υ2 ` C
Υ1,A ⊗ B,Υ2 ` C

Left ⊗

Right I ` I
Υ1,Υ2 ` A

Υ1, I,Υ2 ` A
Left I
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Tensorial logic

Right� Γ,A ` ⊥
Γ ` ⊥� A

Γ ` A
⊥� A,Γ ` ⊥

Left�

Right( A,Γ ` ⊥
Γ ` A(⊥

Γ ` A
Γ,A(⊥ ` ⊥

Left(

A primitive kernel of logic
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Resource modalities and quantification

Weakening Γ ` B
Γ , ! A ` B

Γ , ! A , ! A ` B
Γ , ! A ` B

Contraction

Promotion Γ , A ` B
Γ , ! A ` B

! Γ ` A
! Γ ` ! A

Dereliction

Left ∃ Γ , A(x) ` B
Γ , ∃x .A ` B

Γ ` A(t)
Γ ` ∃x .A

Right ∃
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Dialogue categories

A monoidal category with a left duality

A natural bijection between the set of maps

A ⊗ B −→ ⊥

and the set of maps

B −→ A(⊥

A familiar situation in tensorial algebra
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Dialogue categories

A monoidal category with a right duality

A natural bijection between the set of maps
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A −→ ⊥� B

A familiar situation in tensorial algebra
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Dialogue categories

Definition. A dialogue category is a monoidal category C equipped with

B an object ⊥

B two natural bijections

ϕA,B : C (A ⊗ B,⊥) −→ C (B,A(⊥)

ψA,B : C (A ⊗ B,⊥) −→ C (A,⊥� B)
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Helical dialogue categories

A dialogue category equipped with a family of bijections

wheel A,B : C (A ⊗ B,⊥) −→ C (B ⊗ A,⊥)

natural in A and B making the diagram

C ((B ⊗ C) ⊗ A,⊥)
associativity

//C (A ⊗ (C ⊗ B),⊥)

wheel B,C⊗A

��

C (A ⊗ (B ⊗ C))

wheel A,B⊗C

OO

associativity

��

C ((C ⊗ A) ⊗ B,⊥)

C ((A ⊗ B) ⊗ C,⊥)
wheel A⊗B,C //C (C ⊗ (A ⊗ B),⊥)

associativity

OO

commutes.
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Helical dialogue categories

The wheel should be understood diagrammatically as:

wheel x,y :

x y

f 7→

xy

f
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The coherence diagram

xz

f

y

xz

f

yx z

f

y

wheel x y

wheel x wheel, y z y , z x

, z
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An equivalent formulation

A dialogue category equipped with a natural isomorphism

turn A : A(⊥ −→ ⊥� A

making the diagram below commute:

⊥

(⊥� A) ⊗ A

eval
66

B ⊗ (B(⊥)

eval
hh

(A(⊥) ⊗ A

turn A

OO

B ⊗ (⊥� B)

turn−1
B

OO

B ⊗ ((A ⊗ B)(⊥) ⊗ A

eval

OO

turn A⊗B //B ⊗ (⊥� (A ⊗ B)) ⊗ A

eval

OO
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Braided categories

A monoidal category C equipped with a family of isomorphisms

γA,B : A ⊗ B −→ B ⊗ A

natural in A and B, represented pictorially as the positive braiding

B

B A

A
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Braided categories

As expected, the inverse map

γ−1
A,B : B ⊗ A −→ A ⊗ B

is represented pictorially as the negative braiding

A

A B

B
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Coherence diagram for braids [1]

A ⊗ (B ⊗ C)
γ

// (B ⊗ C) ⊗ A

α

  

(A ⊗ B) ⊗ C

α

55

γ⊗C
**

B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C α //B ⊗ (A ⊗ C)
B⊗γ

>>
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Same coherence diagram in string diagrams

x y z

xy z

=

x y z

xy z
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Coherence diagram for braids [2]

(A ⊗ B) ⊗ C
γ

//C ⊗ (A ⊗ B)

α−1

  

A ⊗ (B ⊗ C)

α−1
55

A⊗γ
**

(C ⊗ A) ⊗ B

A ⊗ (C ⊗ B) α−1
// (A ⊗ C) ⊗ B

γ⊗B

>>
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Same coherence diagram in string diagrams

x y z

x yz

=

x y z

x yz
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Balanced categories

A braided monoidal category C equipped with a twist

θA : A −→ A

defined as a natural family of isomorphisms, and depicted as

A

A
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Coherence for twists

The twist θ is required to satisfy the equality

θ I = id I

and to make the diagram

A ⊗ B
γA,B //

θA⊗B

��

B ⊗ A

θB⊗θA

��

A ⊗ B B ⊗ AγB,A
oo

commute for all objects A and B.
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Coherence for twists

θx⊗y =

x y

x y
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The free balanced dialogue category

The objects of the category free-dialogue(C ) are the formulas
of tensorial ribbon logic:

A,B ::= X | A ⊗ B | A(⊥ | ⊥� A | 1

where X is an object of the category C .

The morphisms are the proofs of the logic modulo equality.

In the case of the free balanced dialogue category
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Ribbon logic

Main ingredient: the exchange rule

Exchange [g] A1, . . . ,An ` B
Ag∗1, . . . ,Ag∗n ` B

is parametrized by the elements g ∈ Gn of the ribbon group.
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A proof-as-tangle theorem

Every category C of atomic formulas induces a functor [−] such that

free-dialogue(C )
[−]

// free-ribbon(C⊥)

C

77``

where C⊥ is the category C extended with an object ⊥.

Theorem. The functor [−] is faithful.

−→ a topological foundation for game semantics
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An illustration

Imagine that we want to check that the diagram

⊥� (⊥� x) ⊥�turn x //⊥� (x(⊥)

(⊥� x)(⊥

turn⊥�x

OO

⊥� (x(⊥)

twist�(x(⊥)

OO

x
η′

ee

η

99

commutes in every balanced dialogue category.
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An illustration

Equivalently, we want to check that the two derivation trees below are
equal:

A ` Aleft( A , A(⊥ ` ⊥
left( A , A(⊥ ` ⊥twist A , A(⊥ ` ⊥right� A ` ⊥� (A(⊥)

A ` Aleft( A , A(⊥ ` ⊥braiding A(⊥ , A ` ⊥right� A(⊥ ` ⊥� A
A ` A left�

⊥� A , A ` ⊥ cutA(⊥ , A ` ⊥braiding A , A(⊥ ` ⊥right� A ` ⊥� (A(⊥)
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An illustration

equality of proofs ⇐⇒ equality of tangles
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Game semantics in string diagrams

The connection to Guy’s tutorial on dialogue games
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Main theorem

The objects of the free symmetric dialogue category are dialogue games
constructed by the grammar

A,B ::= X | A ⊗ B | ¬A | 1

where X is an object of the category C .

The morphisms are total and innocent strategies on dialogue games.

As we will see: proofs become 3-dimensional variants of knots...
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An algebraic presentation of dialogue categories

Negation defines a pair of adjoint functors

C

L

��

⊥ C op

R

]]

witnessed by the series of bijection:

C (A,¬ B) � C (B,¬ A) � C op (¬ A,B)
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An algebraic presentation of dialogue chiralities

The algebraic presentation starts by the pair of adjoint functors

A

L

��

⊥ B

R

]]

between the two components A and B of the dialogue chirality.
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The 2-dimensional topology of adjunctions

The unit and counit of the adjunction L a R are depicted as

η : Id −→ R ◦ L

L

R
η

ε : L ◦ R −→ Id

R

L

ε

Opponent move = functor R Proponent move = functor L
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A typical proof

L

L

L L

L

R

R

RR

R

Reveals the algebraic nature of game semantics
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A purely diagrammatic cut elimination

R

L
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The 2-dimensional dynamics of adjunctions

ε

η

L

L

= LL

η

ε
R

R

= RR

Recovers the usual way to compose strategies in game semantics
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When a tensor meets a negation...

The continuation monad is strong

(¬¬A) ⊗ B −→ ¬¬ (A ⊗ B)

As Gordon explained, this is the starting point of algebraic effects
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Tensor vs. negation

Proofs are generated by a parametric strength

κX : ¬ (X ⊗ ¬A) ⊗ B −→ ¬ (X ⊗ ¬ (A ⊗ B))

which generalizes the usual notion of strong monad :

κ : ¬¬A ⊗ B −→ ¬¬ (A ⊗ B)
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Proofs as 3-dimensional string diagrams

The left-to-right proof of the sequent

¬¬A ⊗ ¬¬B ` ¬¬(A ⊗ B)

is depicted as

κ+κ+

ε

BA

R

A

B

R

R
LL

L
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Tensor vs. negation : conjunctive strength

7

R A2

6

B L

A1

κ7
−→

R

6

B L

7

A1 A2

Linear distributivity in a continuation framework
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Tensor vs. negation : disjunctive strength

L

7

A R

6

B1 B2

κ6
−→

6

L B2

7

A R

B1

Linear distributivity in a continuation framework
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A factorization theorem

The four proofs η, ε, κ7 and κ6 generate every proof of the logic.
Moreover, every such proof

X ε
−→

κ7
−→

ε
−→

ε
−→

η
−→

η
−→

κ6
−→

ε
−→

η
−→

ε
−→

κ6
−→

η
−→

η
−→ Z

factors uniquely as

X κ7
−→−→

ε
−→−→

η
−→−→

κ6
−→−→ Z

This factorization reflects a Player – Opponent view factorization
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Axiom and cut links

The basic building blocks of linear logic
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Axiom and cut links

Every map

f : X −→ Y

between atoms in the category C induces an axiom and a cut combinator:

f
X

Y*

R

cut

R L

Y

X*

L

ax f
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Equalities between axiom and cut links

f
X

cut

Z

g

ax

η
g  f

X

Z

η

73



Equalities between axiom and cut links

f

X

cutZ

g

ax

ε
g  f

X

Z

ε

*

*

*

*
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Local stores

A diagrammatic account of the local state monad
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Algebraic presentations of effects

We want to reason about programs with effects like states, exceptions...

Computational monads:

A
pimpurep

// B = A
ppurep

// T (B)

Equational theories:

operations : A n
−→ A and equations



Presheaf models

Key idea: interpret a type A as a family of sets

A[0] A[1] · · · A[n] · · ·

indexed by natural numbers, where each set

A[n]

contains the programs of type A which have access to n variables.
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Presheaf models

This defines a covariant presheaf

A[n] : Inj −→ Set

on the category Inj of natural numbers and injections.

The action of the injections on A are induced by the operations

dispose〈loc〉 : A[n] −→ A[n+1]

defined for 0 ≤ loc ≤ n.

78



Local stores [Plotkin & Power 2002]

The slightly intimidating monad

TA : n 7→ S[n]
⇒

( ∫ p∈Inj S[p]
× A[p] × I(n, p)

)

on the presheaf category [Inj,Set] where the contravariant presheaf

S[p] = V p

describes the states available at degree p.

79



Key theorem [ Plotkin & Power 2002]

the category of mnemoids

is equivalent to

the category of algebras of the state monad

This provides an algebraic presentation of the state monad
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Mnemoids

A mnemoid is a family of sets

A[0] A[1] · · · A[n] · · ·

equipped with the following operations

lookup〈loc〉 : AV
[n] −→ A[n]

update〈loc,val〉 : A[n] −→ A[n]

fresh〈loc,val〉 : A[n+1] −→ A[n]

dispose〈loc〉 : A[n] −→ A[n+1]

satisfying a series of basic equations.
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Interaction update – update

val1val2 = val2
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Commutation update – update

val′

val = val

val′
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Interaction update – lookup

true

y

x

= true
x
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Interaction fresh – permutation

D

D

D

D

D

D

D

val
= D

D

D

D

D

D

D

val
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Garbage collect : fresh – dispose

val

D

D

D

D

D

D

=
D

D

D

D

D

D
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Interaction fresh – update

D

D

D

D

D

D

D

val1val2 = D

D

D

D

D

D

D

val2
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Interaction fresh – lookup

false

D

D

D

y

x

= false

D

D

D

y
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Tensorial logic with local stores

Beware: work in progress !
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A dialogue category with local stores

A family of return types

⊥[0] ⊥[1] · · · ⊥[n] · · ·

equipped with the following operations

lookup〈loc〉 : ⊥
V
[n] −→ ⊥[n]

update〈loc,val〉 : ⊥[n] −→ ⊥[n]

fresh〈loc,val〉 : ⊥[n+1] −→ ⊥[n]

dispose〈loc〉 : ⊥[n] −→ ⊥[n+1]

satisfying the equations of a mnemoid.
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Game semantics with local stores

Graphically:

η

ε
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The prototype of a visible (non innocent) strategy
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Game semantics with local stores

Fact. There is a nice and interesting definition of

the free dialogue category M with a mnemoid pole

formulated in the language of game semantics.

Observation: there is a canonical functor

M −→ [Inj,Set]

obtained by taking

⊥[n] : p 7→ T(A)(n + p)

for any presheaf A in the category [Inj,Set]. Typically, take A = 1.
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Work in progress

Devise a neat categorical definition of

a dialogue category with local ground stores

such that the free such dialogue category coincides with the category

– with arena games as objects,

– with visible strategies as morphisms.

I have a definition at this point, but not yet entirely satisfactory...
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