Measurement-based Quantum Computation

Elham Kashefi

University of Edinburgh

Quantum Information Processing

A cross-disciplinary field of great importance from both fundamental and technological perspectives.

It has changed our perspective on the foundation of

Information Theory, Computation and Physics.

It is possible to perform computation both logically and thermodynamically reversible.

Quantum physics is also reversible, as the reverse-time evolution specified by the unitary operator always exists.

Quantum Mechanics in a nutshell

- **Data:** Unit vector in a Hilbert space (qubit)
- **Processing:** Unitary transformation
- **Result:** Projective measurement
- Composite System: Tensor product

Quantum Transition Systems

Entanglement

Non-local Correlation

Fundamental Feature of Quantum Mechanics

- Computation
- Information
- Cryptography

Models of QC

Quantum Circuit Model Quantum Cellular Automata Quantum Turing Machine

Measurement-based QC

Adiabatic QC Topological QC

Quantum Categorical Framework Quantum Processes Calculus Quantum Programming Languages

An end-to-end Story

Physics - Ising Hamiltonian, one-way QC

Raussendorf and Briegel Phys. Rev. Lett. 2000

Formal Methods - Measurement Calculus

Danos, Kashefi, Panangaden JACM 2007

Parallelism and Determinism

Broadbent, Browne, Danos, Kashefi, Mhalla, Perdrix, Phys. Rev. A. 2006, TCS 2007, New. J. Physics 2008, TQC 2009

Protocol Design - Universal Blind QC

Broadbent, Fitzsimons, Kashefi FOCS 2009

Implementation - Foundation of Quantum Mechanics

Bartz, Kashefi, Broadbent, Fitzsimons, Zeilinger, Walther, Science 2012

Measurement-based QC

Measurements play a central role.

Scalable implementation

Clear separation between classical and quantum parts of computation

Entanglement

Clear separation between creation and consumption of resources

Basic Commands

- New qubits, to prepare the auxiliary qubits: N
- Entanglements, to build the quantum channel: E
- Measurements, to propagate (manipulate) qubits: M
- Corrections, to make the computation deterministic: C

2-state System C²

The canonical basis, (1,0), (0,1), also called the computational basis, is usually denoted $|0\rangle$, $|1\rangle$. It is orthonormal by definition of $\langle x, y \rangle_{\mathbb{C}^2}$.

$$|\pm\rangle := \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle) \qquad \qquad |\pm_{\alpha}\rangle := \frac{1}{\sqrt{2}}(|0\rangle \pm e^{i\alpha}|1\rangle)$$

The preparation map N_i^{α} is defined to be: $|+_{\alpha}\rangle \otimes _{-} : \mathfrak{H}_n \to \mathbb{C}^2 \otimes \mathfrak{H}_n$

Maps over \mathbb{C}^2

Pauli Spin Matrices

$$X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Other Single qubit gates

$$H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad P(\alpha) := \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$
$$P(\alpha)^* = P(-\alpha)$$

The two qubit state $\mathbb{C}^2 \otimes \mathbb{C}^2$

Canonical basis

 $\{|00
angle, |01
angle, |10
angle, |11
angle\}$

Bases need not be made of decomposable elements, they can consists of entangled states.

Maps on $\mathbb{C}^2 \otimes \mathbb{C}^2$

• In general if $f : A \to B$ and $g : A' \to B'$, one defines $f \otimes g : A \otimes A' \to B \otimes B' : \psi \otimes \phi \mapsto f(\psi) \otimes g(\phi)$.

• Or given $f : \mathbb{C}^2 \to \mathbb{C}^2$, one defines $\wedge f$ (read controlled-f) a new map on $\mathbb{C}^2 \otimes \mathbb{C}^2$:

$$\begin{array}{ll} \wedge f|0\rangle|\psi\rangle & := & |0\rangle|\psi\rangle \\ \wedge f|1\rangle|\psi\rangle & := & |1\rangle f(|\psi\rangle) \end{array}$$

Entangling Map

$$\wedge Z(|+\rangle \otimes |+\rangle) = \mathcal{G}_{00}$$

Pauli and Clifford

Define the *Pauli group* over A as the closure of $\{X_i, Z_i \mid 1 \le i \le n\}$ under composition and \otimes . These are all local maps (corrections).

Define the *Clifford group* over A as the normalizer of the Pauli group, that is to say the set of unitaries f over A such that for all g in the Pauli group, fgf^{-1} is also in the Pauli group.

Entangling Map is in Clifford

Projective Measurement on \mathfrak{H}_n

A complete measurement is given by an orthonormal basis

$$\mathcal{B} = \{\psi_a\}$$

which defines a decomposition into orthogonal 1-dimensional subspaces

$$\mathfrak{H}_n = \oplus_a E_a$$

Define $|\psi_a\rangle\langle\psi_a|:\mathfrak{H}_n\to E_a$ to be projection to E_a

Destructive Measurement

Given a complete measurement over A, as $\mathcal{A} = \{\psi_a\}$, one can extend it to an incomplete measurement on $A \otimes B$, with components given by $|\psi_a\rangle\langle\psi_a|: A \otimes B \to B$.

1-qubit destructive measurement M^{α} associated to $\{|+_{\alpha}\rangle\}$

If U maps orthonormal basis $\mathcal B$ to $\mathcal A$ then

$$M^{\mathcal{A}} = U M^{\mathcal{B}} U^{\dagger}$$

• *X*-action:

$$\begin{array}{l} X|+_{\alpha}\rangle = |+_{-\alpha}\rangle \\ X|-_{\alpha}\rangle = -|-_{-\alpha}\rangle \end{array}$$

• Z-action:

 $Z|+_{\alpha}\rangle = |+_{\alpha+\pi}\rangle$ $Z|-_{\alpha}\rangle = |-_{\alpha+\pi}\rangle$

A formal language

- N_i prepares qubit in $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$
- M_i^{α} projects qubit onto basis states $|\pm_{\alpha}\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm e^{i\alpha}|1\rangle) = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\\pm e^{i\alpha}\end{pmatrix}$ (measurement outcome is $s_i = 0, 1$)

•
$$E_{ij}$$
 creates entanglement $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

- Local Pauli corrections $X_i = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Z_i = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Feed forward: measurements and corrections commands are allowed to depend on previous measurements outcomes.

$$C_i^s \qquad [M_i^\alpha]^s = M_i^{(-1)^s \alpha} \qquad s[M_i^\alpha] = M_i^{\alpha + s\pi}$$

Dependent Commands

The measurement outcome $s_i \in \mathbb{Z}_2$:

- 0 refers to the $\langle +\alpha |$ projection,
- 1 refers to the $\langle -\alpha |$ projection.

measurements and corrections may be parameterised by signal $\sum_i s_i$

•
$$[M_i^{\alpha}]^s = M_i^{(-1)^s \alpha} = M_i^{\alpha} X_i^s$$

•
$${}_t[M_i^{\alpha}] = M_i^{t\pi + \alpha} = M_i^{\alpha} Z_i^s$$

with
$$X^0 = Z^0 = I$$
, $X^1 = X$, $Z^1 = Z$.

$${}_t[M_i^\alpha]^s = M_i^{t\pi + (-1)^s \alpha}$$

Patterns of Computation

$$(V, I, O, A_n \dots A_1)$$

$$\mathfrak{H} := (\{1,2\},\{1\},\{2\},X_2^{s_1}M_1^0E_{12}N_2^0)$$

Sequential or Parallel Composition

$$X_3^{s_2}M_2^0E_{23} \quad X_2^{s_1}M_1^0E_{12}$$

no command depends on outcomes not yet measured no command acts on a qubit already measured a qubit *i* is measured if and only if *i* is not an output

Example

$$\mathfrak{H} := (\{1,2\},\{1\},\{2\},X_2^{s_1}M_1^0E_{12}N_2^0)$$

Starting with the input state
$$(a|0\rangle + b|1\rangle)|+\rangle$$

$$(a|0\rangle + b|1\rangle)|+\rangle \xrightarrow{E_{12}} \frac{1}{\sqrt{2}}(a|00\rangle + a|01\rangle + b|10\rangle - b|11\rangle)$$

$$M_1^0 \begin{cases} \frac{1}{2}((a+b)|0\rangle + (a-b)|1\rangle) & s_1 = 0 \\ \frac{1}{2}((a-b)|0\rangle + (a+b)|1\rangle) & s_1 = 1 \end{cases}$$

$$\frac{X_2^{s_1}}{\frac{1}{2}((a+b)|0\rangle + (a-b)|1\rangle)}$$

State Space

$$\mathcal{S} := \bigcup_{V,W} \mathfrak{H}_V \times \mathbb{Z}_2^W$$

In other words a computation state is a pair q, Γ , where q is a quantum state and Γ is a map from some W to the outcome space \mathbb{Z}_2 . We call this classical component Γ an *outcome map* and denote by \emptyset the unique map in \mathbb{Z}_2^{\emptyset} .

Operational Semantics

where $\alpha_{\Gamma} = (-1)^{s_{\Gamma}} \alpha + t_{\Gamma} \pi$.

Denotational Semantics

$$\begin{array}{c} \mathfrak{H}_{I} & \longrightarrow \mathfrak{H}_{O} \\ \downarrow & & \uparrow \\ \mathfrak{H}_{I} \times \mathbb{Z}_{2}^{\varnothing} \xrightarrow{prep} \mathfrak{H}_{V} \times \mathbb{Z}_{2}^{\varnothing} \longrightarrow \mathfrak{H}_{O} \times \mathbb{Z}_{2}^{V \smallsetminus O} \end{array}$$

Let $A_{s} = C_{s}\Pi_{s}U$ be a branch map, the pattern realises the cptp-map

$$T(\rho) := \sum_{\mathbf{s}} A_{\mathbf{s}} \rho A_{\mathbf{s}}^{\dagger}$$

Density operator : A probability distribution over quantum states

Denotational Semantics

A pattern is strongly deterministic if all the branch maps are equal.

Theorem. A strongly determinist pattern realises a unitary embedding.

Universal Gates

$$\wedge Z := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$U = e^{i\alpha}J(0)J(\beta)J(\gamma)J(\delta)$$

$$\begin{array}{rcl} P(\alpha) &=& J(0)J(\alpha) \\ H &=& J(0) \\ H^i &=& J(\frac{\pi}{2}) \end{array} \end{array}$$

Generating Patterns

$$\wedge Z := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$\wedge \mathfrak{Z} := E_{12}$$

$$J(lpha) := rac{1}{\sqrt{2}} egin{pmatrix} 1 & e^{ilpha} \ 1 & -e^{ilpha} \end{pmatrix} \qquad \mathfrak{J}($$

$$\mathfrak{J}(\alpha) := X_2^{s_1} M_1^{-\alpha} E_{12}$$

Example (ctrl-U)

$U = e^{i\alpha}J(0)J(\beta)J(\gamma)J(\delta)$

$$\wedge U_{12} = J_1^0 J_1^{\alpha'} J_2^0 J_2^{\beta + \pi} J_2^{-\frac{\gamma}{2}} J_2^{-\frac{\pi}{2}} J_2^0 \wedge Z_{12} J_2^{\frac{\pi}{2}} J_2^{\frac{\gamma}{2}} J_2^{\frac{-\pi - \delta - \beta}{2}} J_2^0 \wedge Z_{12} J_2^{\frac{-\beta + \delta - \pi}{2}}$$
$$\alpha' = \alpha + \frac{\beta + \gamma + \delta}{2}$$

Example (ctrl-U)

Wild Pattern

$$X_{C}^{s_{B}}M_{B}^{0}E_{BC}X_{B}^{s_{A}}M_{A}^{-\alpha'}E_{AB}X_{k}^{s_{j}}M_{j}^{0}E_{jk}X_{j}^{s_{i}}M_{i}^{-\beta-\pi}E_{ij}$$

$$X_{i}^{s_{h}}M_{h}^{\frac{\gamma}{2}}E_{hi}X_{h}^{s_{g}}M_{g}^{\frac{\pi}{2}}E_{gh}X_{g}^{s_{f}}M_{f}^{0}E_{fg}E_{Af}X_{f}^{s_{e}}M_{e}^{-\frac{\pi}{2}}E_{ef}$$

$$X_{e}^{s_{d}}M_{d}^{-\frac{\gamma}{2}}E_{de}X_{d}^{s_{c}}M_{c}^{\frac{\pi+\delta+\beta}{2}}E_{cd}X_{c}^{s_{b}}M_{b}^{0}E_{bc}E_{Ab}X_{b}^{s_{a}}M_{a}^{\frac{\beta-\delta+\pi}{2}}E_{ab}$$

Standard Pattern

 $Z_{k}^{s_{i}+s_{g}+s_{e}+s_{c}+s_{a}}X_{k}^{s_{j}+s_{h}+s_{f}+s_{d}+s_{b}}X_{C}^{s_{B}}Z_{C}^{s_{A}+s_{e}+s_{c}}$ $M_{B}^{0}M_{A}^{-\alpha'}M_{j}^{0}[M_{i}^{\beta-\pi}]^{s_{h}+s_{f}+s_{d}+s_{b}}[M_{h}^{-\frac{\gamma}{2}}]^{s_{g}+s_{e}+s_{c}+s_{a}}[M_{g}^{\frac{\pi}{2}}]^{s_{f}+s_{d}+s_{b}}$ $M_{f}^{0}[M_{e}^{-\frac{\pi}{2}}]^{s_{d}+s_{b}}[M_{d}^{\frac{\gamma}{2}}]^{s_{c}+s_{a}}[M_{c}^{\frac{\pi-\delta-\beta}{2}}]^{s_{b}}M_{b}^{0}M_{a}^{\frac{-\beta+\delta+\pi}{2}}$ $E_{BC}E_{AB}E_{jk}E_{ij}E_{hi}E_{gh}E_{fg}E_{Af}E_{ef}E_{de}E_{cd}E_{bc}E_{ab}E_{Ab}$
Measurement Calculus

Pushing entanglement to the beginning

$$E_{ij}X_i^s = X_i^s Z_j^s E_{ij}$$
$$E_{ij}X_j^s = X_j^s Z_i^s E_{ij}$$
$$E_{ij}Z_i^s = Z_i^s E_{ij}$$
$$E_{ij}Z_j^s = Z_j^s E_{ij}$$

Pushing correction to the end

$$\begin{bmatrix} {}^t [M_i^{\alpha}]^s X_i^r &= {}^t [M_i^{\alpha}]^{s+r} \\ {}^t [M_i^{\alpha}]^s Z_i^r &= {}^{t+r} [M_i^{\alpha}]^s \end{bmatrix}$$

Theorem. The re-writing system is confluent and terminating.

Theorem. An MQC model admits a standardisation procedure iff the *E* operator is normaliser of all the *C* operators.

Algorithm

$U = e^{i\alpha}J(0)J(\beta)J(\gamma)J(\delta)$

 $\mathfrak{J}(0)(4,5)\mathfrak{J}(\alpha)(3,4)\mathfrak{J}(\beta)(2,3)\mathfrak{J}(\gamma)(1,2) =$

$$\begin{split} X_{5}^{s_{4}}M_{4}^{0}E_{45}X_{4}^{s_{3}}M_{3}^{\alpha}E_{34}X_{3}^{s_{2}}M_{2}^{\beta}E_{23}X_{2}^{s_{1}}M_{1}^{\gamma}E_{12} &\Rightarrow_{EX} \\ X_{5}^{s_{4}}M_{4}^{0}E_{45}X_{4}^{s_{3}}M_{3}^{\alpha}E_{34}X_{3}^{s_{2}}M_{2}^{\beta}X_{2}^{s_{1}}Z_{3}^{s_{1}}M_{1}^{\gamma}E_{123} &\Rightarrow_{MX} \\ X_{5}^{s_{4}}M_{4}^{0}E_{45}X_{4}^{s_{3}}M_{3}^{\alpha}E_{34}X_{3}^{s_{2}}Z_{s_{1}}^{3}[M_{2}^{\beta}]^{s_{1}}M_{1}^{\gamma}E_{123} &\Rightarrow_{EXZ} \\ X_{5}^{s_{4}}M_{4}^{0}E_{45}X_{4}^{s_{3}}M_{3}^{\alpha}X_{3}^{s_{2}}Z_{s_{1}}^{3}Z_{4}^{s_{2}}[M_{2}^{\beta}]^{s_{1}}M_{1}^{\gamma}E_{1234} &\Rightarrow_{MXZ} \\ X_{5}^{s_{4}}M_{4}^{0}E_{45}X_{4}^{s_{3}}Z_{4}^{s_{2}}[M_{3}^{\alpha}]^{s_{2}}[M_{2}^{\beta}]^{s_{1}}M_{1}^{\gamma}E_{1234} &\Rightarrow_{EXZ} \\ X_{5}^{s_{4}}M_{4}^{0}E_{45}X_{4}^{s_{3}}Z_{4}^{s_{2}}s_{1}[M_{3}^{\alpha}]^{s_{2}}[M_{2}^{\beta}]^{s_{1}}M_{1}^{\gamma}E_{1234} &\Rightarrow_{EXZ} \\ X_{5}^{s_{4}}M_{4}^{0}X_{4}^{s_{3}}Z_{4}^{s_{2}}Z_{5}^{s_{3}}s_{1}}[M_{3}^{\alpha}]^{s_{2}}[M_{2}^{\beta}]^{s_{1}}M_{1}^{\gamma}E_{12345} &\Rightarrow_{MXZ} \end{split}$$

Worst Case Complexity: $O(N^5)$ where N is the number of qubits in the given pattern

✓ Compositional
 ✓ Universal
 ✓ Standardisation EMCN

Why Standardisation

The Key Feature of MBQC

A clean separation between Classical and Quantum Control

No dependency Theorems

Theorem. If pattern P with no dependent commands implements unitary U, then U is in Clifford

Gottesman Knill Theorem

Efficient representation in terms of Pauli Operators

If the states of computation are restricted to the stabiliser states and the operation over them to the Clifford group then the corresponding quantum computation can be efficiently simulated using Classical Computing

Preserves the efficient representation

Classical Simulation

Corollary. Any MBQC pattern with only Pauli measurements can be efficiently simulated using Classical Computing.

Model checking for a class of quantum protocols using PRISM

S. J. Gay, R. Nagarajan and N. Papanikolaou.

Signal Shifting

Reducing Depth

Depth of a pattern is the length of the longest feed-forward chain

Standardisation and Signal Shifting reduce depth.

$$Z_g^{s_b} X_g^{s_d} Z_f^{s_b} Z_f^{s_a} Z_e^{s_a} X_e^{s_c} [M_d^{\delta}]^{s_b} [M_c^{\gamma}]^{s_a} {}_{s_a} [M_b^{\beta}] M_a^{\alpha} E_G$$

$$Z_{g}^{s_{b}} X_{g}^{s_{d}} Z_{f}^{s_{b}} Z_{f}^{s_{a}} Z_{e}^{s_{a}} X_{e}^{s_{c}} [M_{d}^{\delta}]^{s_{b}} [M_{c}^{\gamma}]^{s_{a}} \boxed{s_{a} [M_{b}^{\beta}]} M_{a}^{\alpha} E_{G}$$

$$\Rightarrow Z_{g}^{s_{b}} X_{g}^{s_{d}} Z_{f}^{s_{b}} Z_{f}^{s_{a}} Z_{e}^{s_{a}} X_{e}^{s_{c}} \boxed{[M_{d}^{\delta}]^{s_{b}} S_{b}^{s_{a}}} [M_{c}^{\gamma}]^{s_{a}} M_{b}^{\beta} M_{a}^{\alpha} E_{G}$$

$$\Rightarrow Z_{g}^{s_{b}} X_{g}^{s_{d}} \boxed{Z_{f}^{s_{b}} S_{b}^{s_{a}}} Z_{f}^{s_{a}} Z_{e}^{s_{a}} X_{e}^{s_{c}} [M_{d}^{\delta}]^{s_{b}+s_{a}} [M_{c}^{\gamma}]^{s_{a}} M_{b}^{\beta} M_{a}^{\alpha} E_{G}$$

$$\Rightarrow \boxed{Z_{g}^{s_{b}} S_{b}^{s_{a}}} X_{g}^{s_{d}} Z_{f}^{s_{b}+s_{a}} Z_{f}^{s_{a}} Z_{e}^{s_{a}} X_{e}^{s_{c}} [M_{d}^{\delta}]^{s_{b}+s_{a}} [M_{c}^{\gamma}]^{s_{a}} M_{b}^{\beta} M_{a}^{\alpha} E_{G}$$

$$\Rightarrow Z_{g}^{s_{b}+s_{a}} X_{g}^{s_{d}} Z_{f}^{s_{b}} Z_{e}^{s_{a}} X_{e}^{s_{c}} [M_{d}^{\delta}]^{s_{b}+s_{a}} [M_{c}^{\gamma}]^{s_{a}} M_{b}^{\beta} M_{a}^{\alpha} E_{G}$$

Depth Complexity

All the models for QC are equivalent in computational power.

Theorem. There exists a logarithmic separation in depth complexity between MBQC and circuit model.

Parity function: MQC needs 1 quantum layer and $O(\log n)$ classical layers whereas in the circuit model the quantum depth is $\Omega(\log n)$

A. Broadbent and E. Kashefi, TCS 07

Depth Complexity

Theorem. MBQC has the same parallel computational power as quantum circuits with unbounded fan-out.

D. Browne, E. Kashefi, S. Perdrix TQC 07

Automated Parallelising Scheme

Theorem. Forward and backward translation between circuit model and MQC can only decrease the depth.

Characterisation

Theorem. A pattern has depth d + 2 if and only if on any influencing path we obtain $P^*N^{i \leq d}P^*$ after applying the following rewriting rule:

$$N P_1^* \alpha_1 \beta_1 P_2^* \alpha_2 \beta_2 \cdots P_k^* N \begin{cases} NN & \text{if } \forall P_i^* \neq X(XY)^* \\ N & \text{otherwise} \end{cases}$$

The Magical Clifford Sequence

Example

Can be parallelised to a pattern with depth 2

A pattern is deterministic if all the branches are the same.

How to obtain global determinism via local controls

A necessary and sufficient condition for determinism based on geometry of entanglement

Definition. An entanglement graph (G, I, O) has flow if there exists a map $f: O^c \to I^c$ and a partial order \preceq over qubits

- (i)
$$x \sim f(x)$$

- (ii) $x \leq f(x)$
- (iii) for all $y \sim f(x)$, we have $x \leq y$

V. Danos and E. Kashefi Phys. Rev. A 07

Find

- a qubits to qubits assignment
- ► a matching partial order

Find

- a qubits to qubits assignment
- ► a matching partial order

Constructive Determinism

Theorem. A pattern is uniformly and step-wise deterministic iff its graph has a flow.

 $\prod_{i\in O^c} (X_{f(i)}^{s_i} \prod_{k\in N_G(f(i))\smallsetminus\{i\}} Z_k^{s_i} M_i^{\alpha_i}) E_G$

Pattern Design

Given a Unitary map we have to find

****** Entanglement graph, G(V, I, O)

****** Angles of measurements, $\{\alpha_i\}$

****** Dependency structure

$$Z_{k}^{s_{i}+s_{g}+s_{e}+s_{c}+s_{a}}X_{k}^{s_{j}+s_{h}+s_{f}+s_{d}+s_{b}}X_{C}^{s_{B}}Z_{C}^{s_{A}+s_{e}+s_{c}}$$

$$M_{B}^{0}M_{A}^{-\alpha'}M_{j}^{0}[M_{i}^{\beta-\pi}]^{s_{h}+s_{f}+s_{d}+s_{b}}[M_{h}^{-\frac{\gamma}{2}}]^{s_{g}+s_{e}+s_{c}+s_{a}}[M_{g}^{\frac{\pi}{2}}]^{s_{f}+s_{d}+s_{b}}$$

$$M_{f}^{0}[M_{e}^{-\frac{\pi}{2}}]^{s_{d}+s_{b}}[M_{d}^{\frac{\gamma}{2}}]^{s_{c}+s_{a}}[M_{c}^{\frac{\pi-\delta-\beta}{2}}]^{s_{b}}M_{b}^{0}M_{a}^{\frac{-\beta+\delta+\pi}{2}}$$

$$E_{BC}E_{AB}E_{jk}E_{ij}E_{hi}E_{gh}E_{fg}E_{Af}E_{ef}E_{de}E_{cd}E_{bc}E_{ab}E_{Ab}$$

Indirect Way

- Start with a circuit implementing U
- Translates each gate with the corresponding pattern
- Use measurements calculus algorithm to obtain the standard form

Direct Way

• Given U find G and $\{lpha_i\}$

(Phase Map Decomposition)

From the geometry of G obtain the feed-forward structure

(Flow Condition)

• If failed then back track

Phase Map Decomposition

Theorem. Every Unitary on *n* qubits can be decomposed as:

 $U = R_O \circ D_V \circ P_{I^c}$

Preparation map, $P_{I^c} : \mathcal{H}_I \to \mathcal{H}_V$ where $|x\rangle \mapsto |x\rangle \otimes |+\cdots +\rangle_{I^c}$

Restriction map, $R_O : \mathcal{H}_V \to \mathcal{H}_O$ where $|x\rangle \mapsto |x\rangle|_O$

Example

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

$$J_{\alpha} = R_{12 \to 2} D_{12 \to 12} P_{1 \to 12}$$

An algorithm to generate all such decompositions

- Input: for sets V, I, and O and $n = |I^c|$:
 - ** a unitary U on \mathcal{H}_I ; ** complex numbers { $x_{pq}^{(i)}$ } $_{i=1}^{2^{n-|I|}}$ satisfying Equations:

$$\begin{array}{l} u = \sum_{i \le 2^{n-|I|}} x^{(i)} \\ 2^{n/2} |x^{(i)}| = 1 \end{array}$$

****** a permutation σ over $\{1, \dots, 2^{n-|I|}\}$.

• Output: diagonal elements $\{d_{kk}\}_{k=1}^{2^{|V|}}$, such that $d_{kk} = \sqrt{2^n} x_{pq}^{(i)}$, where:

** the binary representation of p agrees with that of k after restriction to O; ** $q \equiv k \mod 2^{|I|}$; ** $i = \sigma(\lfloor k/2^{|I|} \rfloor)$.

An algorithm to obtain the graph and the angles

- Input: A phase map decomposition for U
- Output: either (i) A graph G on V and $\{\alpha_j\}_{j \in O^c}$, or (ii) no matching graph exists.
 - 1. For $j \in \{1, \dots, |O^c|\}$, consider the |V|-bit string \mathbf{z}_j that only has a 1 at position j, and set α such that $e^{-i\alpha_j} = d_{\mathbf{z}_j \mathbf{z}_j}$.
 - 2. For all j, k, consider the |V|-bit string \mathbf{z}_{jk} having a 1 only at positions j and k. Check whether $d_{\mathbf{z}_{jk}\mathbf{z}_{jk}} = \pm e^{-i(\alpha_j + \alpha_k)}$ (the angles for the corresponding qubit in O is taken to be 0).
 - (i) if YES and the sign is -1, return E_{jk} as an edge in G.
 - (ii) if NO, no matching graph exists.

A pattern with projections

 $\langle +_{\alpha} |_{1} \wedge Z_{12} \rangle P_{2}$

We need to replace *projections* with *measurements* and still obtain determinism

From Projection to Measurement

 $P_i^{|+_{\alpha}\rangle} =$

From Projection to Measurement

$$P_i^{|+\alpha\rangle} E_{ij} = M_i^{\alpha} X_j^{s_i} E_{ij} X_j^{s_i}$$

From Noise to Determinism

A pattern is **deterministic** if all the branches are the same.

A necessary condition for determinism based on **geometry** of entanglement is given by flow

Definition. An entanglement graph (G, I, O) has flow if there exists a map $f: O^c \to I^c$ and a partial order \preceq over qubits

$$\begin{array}{ll} & - & (i) & x \sim f(x) \\ & - & (ii) & x \preceq f(x) \\ & - & (iii) & \text{for all } y \sim f(x) \text{, we have } x \preceq y \end{array}$$

Flow

Theorem. A pattern with flow is uniformly and strongly deterministic.

Patterns with flow

Unitary embedding

Static structure/Entanglement Understand Analyse Control Quantum Computation

Parallelism, Determinism, Decomposition

Future Directions - Specific tools for MBQC

Algorithmic Design

Direct synthesis of unitaries as patterns

Complexity Analysis

Parallelisation scheme and characterisation of low depth patterns

Security Protocols

Commitment and hiding by exploring the geometry of interaction

Model Checking and Formal Verification

To detect security leaks in protocols

Experimental Blind Quantum Computing

Experimental Blind Quantum Computing

Stefanie Barz Vienna

> Elham Kashefi, Edinburgh

Anne Broadbent Waterloo

Anton Zeilinger. Vienna

Philip Walther, Vienna

Joe Fitzsimons, Singapore

Cloud Computing

Homomorphic Encryption

Rivest 78: Processing encrypted data without decrypting it first

- Voting system
- Collision-resistance hash function
- Private information retrieval

➡ There are several efficient, partially homomorphic cryptosystems

(RSA: for multiplication)

Gentry 09: A Lattice-based cryptosystem that is fully homomorphic but **inefficient** and only **computationally secure**

Broadbent Fitzsimons Kashefi 09: A quantum based fully homomorphic unconditionally secure cryptosystem with verification

Related Works

• Arrighi and Salvail- Blind QC for a restricted set of classical functions

Alice needs quantum memory, state preparation and measurement

- The classical function is public
- Polynomial security against individual attacks
- Andrew Childs Secure assisted QC
 - Alice needs quantum memory, state preparation and Pauli gates
 - The unitary function is public
 - In general dishonest Bob cannot be detected

• Aharonov, Ben-Or and Eban - Interactive Prove for QC

Alice has a constant-size quantum computer

Universal Blind QC Protocol

Our Technique

Measurement-based Quantum Computing

[Raussendorf, Briegel, 2001]

Measurement Calculus

[Danos, Kashefi, Panangaden 2007]

Program is encoded in the classical control computer Computation Power is encoded in the entanglement

The First MBQC Protocol

One-qubit Teleportation

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

• One-qubit Teleportation $J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$

• One-qubit Teleportation
$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

Blindness. if θ is chosen uniformly random and independent of α then $(\alpha + \theta)$ is also uniformly random

• One-qubit Teleportation
$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

Universality

Main Protocol

Blindness

Protocol P on input $X = (\tilde{U}, \{\phi_{x,y}\})$ leaks at most L(X)

The distribution of the classical information obtained by Bob is independent of X

 \blacksquare Given the above distribution, the quantum state is fixed and independent of X

Proof (L(X)=m,n)

➡ Independence of Bob's classical information

$$\theta_{x,y} \in_R \{0, \cdots, 7\pi/4\}$$
$$r_{x,y} \in_R \{0, 1\}$$
$$\delta_{x,y} = \phi'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

 \blacksquare Independence of Bob's quantum information for a fixed δ

1.
$$r_{x,y} = 0$$
 so $\delta_{x,y} = \phi'_{x,y} + \theta'_{x,y}$ and $|\psi_{x,y}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i(\delta_{x,y} - \phi'_{x,y})}|1\rangle).$
2. $r_{x,y} = 1$ so $\delta_{x,y} = \phi'_{x,y} + \theta'_{x,y} + \pi$ and $|\psi_{x,y}\rangle = \frac{1}{\sqrt{2}}(|0\rangle - e^{i(\delta_{x,y} - \phi'_{x,y})}|1\rangle).$

Real Bob

PHOTONIC QUANTUM COMPUTATION AND QUANTUM SIMULATION

Univ.-Ass. Dr. Philip Walther Photonic Quantum Computation & Quantum Simulation

2

1

Horseshoe⁽⁴⁾ cluster

Photonic ToolBox for QC

Implementation = Think Small

Implementation = Ask Minimum

$$|\theta_1\rangle = |\theta_2\rangle = |\theta_3\rangle = |\theta_4\rangle$$

$$\theta_1 = \theta_4 = 0$$

random single qubit generator

random bell pair generator

No Feed-Forward

Theory = Justify Implementation

Theorem. The post-selected partially rotated Blind QC protocol is still blind.

Experimental Set-up

Blind Grover Algorithm

Given a function
$$f: \{0,1\}^n \to \{0,1\}$$

Find an x such that $f(x) = 1$

$$\begin{split} \delta_2 &- \theta_2 - \pi r_2 \in \{\pm \pi/2\} \quad |\theta_2\rangle - |\theta_1\rangle \pi/2 \\ \delta_3 &- \theta_3 - \pi r_3 \in \{0, \pi\} \quad |\theta_3\rangle - |\theta_4\rangle \pi/2 \end{split}$$

Blind Duetsch Algorithm

$$f: \{0,1\}^n \to \{0,1\}$$
Determine if function is constant or balance 1 1 1
$$f(0) = f(1) = 0$$

$$f(0) = 0, f(1) = 1$$

Testing the quantum server

Client can find out if the server possesses any quantum technology

- Measurement of the probability distributions for a fixed measurement setting
- Comparison with the theoretical expectations

Testing the quantum server

Real Stuff

Vazirani (07)

Can we test the validity of QM in the regime of

exponential-dimension Hilbert Space?

What can a computationally unbounded entity prove to a mere mortal (BPP)?

Asking help without trusting

Interactive Proofs

Gottesman (04) - Aaronson **\$25** Challenge (07)

Does every language in the class BQP admit an interactive protocol where the prover is in BQP and the verifier is in BPP?

Can we classically and efficiently verify quantum devices ?
Interactive Proofs

Classical Computer + 2 Provers + Entanglement = Quantum Computer

Interactive Proofs

Quantum Computer + Multi Interactive Proof = Classical Computer + Multi Interactive Proof = NEXP

[Kobayashi, Matsumoto, 2003]

Quantum Computer + Interactive Proof = Classical Computer + Interactive Proof = PSPACE

[Jain, Ji, Upadhyay, Watrous 2009]

parallel matrix multiplicative weights update method to a class of semidefinite programs

Entangled Provers

Classical Channel + Entanglement = Quantum Channel

Classical Computer + 2 Provers + Entanglement = Quantum Computer

Quantum Computer + Multi Interactive Proof + Entanglement = Classical Computer + Multi Interactive Proof + Entanglement =

[Broadbent, Fitzsimons, Kashefi 2010]

Speculation

Quantum computing adds no power to the interactive proof system even with multi provers and entanglement

Entanglement = Quantum memory

Interactive proof

Interactive proof

$QMIP = MIP^*$

We design an interactive protocol with only classical communication that replaces a turn for the verifier in a given quantum interactive proof system the new protocol requires only classical resources for the verifier.

Perfect Privacy

