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Quantum Information Processing

A cross-disciplinary field of great importance from both
fundamental and technological perspectives.

It has changed our perspective on the foundation of

Information Theory, Computation and Physics.



Birth of QIP

It is possible to perform computation both
logically and thermodynamically reversible.

Quantum physics is also reversible, as the reverse-time
evolution specified by the unitary operator always exists.



Quantum Mechanics in a nutshell

e Data: Unit vector in a Hilbert space (qubit)
* Processing: Unitary transformation
* Result: Projective measurement

* Composite System: Tensor product



Quantum Transition Systems
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Entanglement

Non-local Correlation
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Fundamental Feature of
Quantum Mechanics

= Computation
= |nformation
= Cryptography




Models of QC

Quantum Circuit Model
Quantum Cellular Automata
Quantum Turing Machine

Measurement-based QC

Adiabatic QC
Topological QC

Quantum Categorical Framework
Quantum Processes Calculus
Quantum Programming Languages




An end-to-end Story

* Physics - Ising Hamiltonian, one-way QC
Raussendorf and Briegel Phys. Rev. Lett. 2000

* Formal Methods - Measurement Calculus
Danos, Kashefi, Panangaden JACM 2007

e Parallelism and Determinism
Broadbent, Browne, Danos, Kashefi, Mhalla, Perdrix,

Phys. Rev. A. 2006, TCS 2007, New. J. Physics 2008, TQC 2009

* Protocol Design - Universal Blind QC
Broadbent, Fitzsimons, Kashefi FOCS 2009

* Implementation - Foundation of Quantum Mechanics

Bartz, Kashefi, Broadbent, Fitzsimons, Zeilinger, Walther, Science 2012




Measurement-based QC

Measurements play a central role.

Scalable implementation

Clear separation between classical and quantum parts of computation
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Entanglement

Clear separation between creation and consumption of resources



Quantum Pacman
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Basic Commands

* New qubits, to prepare the auxiliary qubits: /V
e Entanglements, to build the quantum channel: £
* Measurements, to propagate(manipulate) qubits: N/

 Corrections, to make the computation deterministic: C



2-state System (2

The canonical basis, (1,0), (0,1), also called the computational
basis, is usually denoted |0), |1). It is orthonormal by definition of
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The preparation map N is defined to be:
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Maps over (2

Pauli Spin Matrices

= (1o) 2= (00

Other Single qubit gates

H = %G _11> Pla) = (é 6?04)

P(a)* = P(—a)



The two qubit state C2 @ C2

Canonical basis

1/00),101),]10),[11)}

Bases need not be made of decomposable elements, they
can consists of entangled states.

Graph basis
Qoo=%( 0) 4 [01) + |10) — [11))
Go1 =?( 0) —[01) +[10) +[11))
G10 = 5(|00) +|01) — |10) + [11))
G11 = 5(|00) —[01) — [10) — [11))




Maps on C2 © C?2

e In general if f: A— B and g: A’ — B’, one defines
f®g:A®A - BB ¢y ®¢— (1) ®@g(¢).

e Or given f: C?2 — C?, one defines Af (read controlled-f) a new
map on C2 ® C=:

AF10) )
A1) )

0)])
1) ()

Entangling Map

ANZ(|+) ® |+)) = Goo




Pauli and Clifford

Define the Pauli group over A as the closure of {X;,Z; |1 <i<n}
under composition and ®. These are all local maps (corrections).

Define the Clifford group over A as the normalizer of the Pauli
group, that is to say the set of unitaries f over A such that for all g
in the Pauli group, fgf—! is also in the Pauli group.

Entangling Map is in Clifford

/\ZZ]XZ = XiZj /\Zij
/\Zisz' = Z; /\Zij



Projective Measurement on f)n

A complete measurement is given by an orthonormal basis

B = {va}

which defines a decomposition into orthogonal 1-dimensional subspaces

ﬁn = Dol

Define |%a)(Yal| : Hn — Ea to be projection to E,

Outcome

%Daa Wa

\ Probability



Destructive Measurement

Given a complete measurement over A, as A = {14}, one can
extend it to an incomplete measurement on A ® B, with
components given by |Yq){(¥a| : AQ® B — B.

1-qubit destructive measurement
M  associated to {| a>}




Unitary Action

If U maps orthonormal basis B to A then
MA = UMBUT

® X-action:

XH‘oz> — H‘—Oz>
X|=a) = —|—a)

® /-action:

Zlt+a) = |+tadr)
Zl=a) = |=atn)



Quantum Pacman




A formal language

e N, prepares qubitin |[+) = \%(\O) + 1))

|
S
7 N\
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Sl

* M projects qubit onto basis states |+,) = \%(\O} + '@|1))

(measurement outcome is s; = 0, 1)

1
+ele

1 00 0
010 0
* Iu;; creates entanglement (0 0 1 0
000 —1
0 1 1 0
: : X = 7. —
* Local Pauli corrections i <1 O> : ; (O _1)

* Feed forward: measurements and corrections commands are allowed to depend on
previous measurements outcomes.

(2

C'S [Mioz]s — Mz'(_l)sa S[Mza] — Mioz—I—SW



Dependent Commands

he measurement outcome s; € Zo
— O refers to the (4| projection,
— 1 refers to the (—4| projection.

measurements and corrections may be parameterised by signal D i Si

o (M) =MV = Mpx;
o MY =Mt = pMags

with X0=29=7 X1=x 2z'=127.

T A




Patterns of Computation

(V,1,0, Ay, ... A7)

9= ({1,2}, {1}, {2}, X5 M9 E15NY)

Sequential or Parallel Composition

X32MSE>3  X3'MPEqo




Definiteness Conditions

no command depends on outcomes not yet measured
no command acts on a qubit already measured
a qubit ¢z is measured if and only if 7 is not an output



Example

9= ({1,2}, {1}, {2}, X3' M9 E;1,NY)

Starting with the input state (a|0) +b|1))|+) (@ O

E
5 1 (aI00) +al01 +810)~111) 5 ) @——O

(al0) + b[1))[+)

2((a+1b)]|0) 4 (a — b)|1)) s1 =0 O

L((a—=b)0)+ (a+b)1) s1=1

T2, TG+ b)I0) + (@ D))




State Space

S = UywHv x 23

In other words a computation state is a pair q, I', where q is a

quantum state and I is a map from some W to the outcome space
Zi>. We call this classical component ' an outcome map and
denote by @ the unique map in Z5.



Operational Semantics

N&
Q7I— — Q®‘+Oé>7,7r
By
q, B ?Z) X;r(b I
. T —  Z"q,T
t[M]°
M .
q, — <+Oér‘7;q> [0/1]
[M]°

q, 7  — <_ar‘7;q7 M[1/i]
where af = (—1)%Ta + t.



Denotational Semantics

‘6[ ....................................................................................................................... >‘60
i T
re
f)[XZ?p pf)vng fj XZ‘Q/\O

Let As = GSTTgU be a branch map, the pattern realises the
Cptp-map

T(p) =) AspAl

Density operator : A probability distribution over quantum states



Denotational Semantics

5731 ....................................................................................................................... >ij
i !
91 x 28 PE oy x 28 —— 9o x 75O

A pattern is strongly deterministic if all the branch maps are equal.

Theorem. A strongly determinist pattern realises a unitary embedding.




Universal Gates
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Generating Patterns
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Example (ctrl-U)

U = €e*J(0)J(B)J(v)J(d)

0 7o/ 70 1B+T 173 775 10 535 0 T

- Btyt9
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Example (ctrl-U)

Wild Pattern

X MgEBCXSAMA EapX) MOE; X5 M; 7T E;

i
XS M2, ngMgEghXSfMJQEngAfoeM °E,;

< T+6+0 < B—o+m
XM, 2E XM, 2 EgXc’MPEREpX°M, 2 Egy

v

Standard Pattern

Sitsgtsetsetsa g j+5h+3f+5d+SbX ZSA‘|‘86+SC
k

MBMA MJQ[Miﬁ 7TSh+Sf+Sd-|-Sb[M 2]89—|—Se—|-sc—|—8a[MQ]Sf‘l'Sd‘l'Sb
T T—0—0 —B+d0+m

M?[Me 2]Sd—|—8b[M2 SC_I_SCL[MC 2 ]Sbe M, 2

EBCEABEjkEijEthgthgEAfEefEdeEchbcEabEAb




Measurement Calculus

Pushing entanglement to the beginning

Engf — Xf Z;Eij Pushing correction to the end
EZ]XJS — X;Zwa t[MZ.O‘]SXZ — t[MZ.O‘]S‘I'T
Eijz; = ZiEi MRz = UM

Theorem. The re-writing system is confluent and terminating.

Theorem. An MQC model admits a standardisation procedure
Iff the E operator is normaliser of all the C operators.




Algorithm

U =eJ(0)J(8)J(7)J(3)

J(0)(4,5)3()(3,4)3(8)(2,3)3(v)(1,2)

X MOE45 X2 M B3 X532 My Eos X3! M By =px
XS4M2E45X83M3E34X§2M5X31Z§1M'7E123 = MX
XS4M E45XS3M§‘E34XSQZ3 [M ]SlM E123 =Epxz
XS4M2E45XS3M§‘XSQZ3 ZSQ[M2]81M3E1234 =>MXZ
Xet MR Eas X 37,2 6, [M$]52 [M%]81M¥E1234 —EXZ
Xt MR X372 7835, [MS1°2[M5 151 M] E12345 =Xz

Worst Case Complexity: O(N°) where NN is the number of qubits in the given pattern




v Compositional
v Universal
v’ Standardisation EMCN

Why Standardisation

Strong tool for proving pattern properties
Revealing Parallel Structure
Characterisation of Determinism
Pattern Synthesis

Protocol Design




The Key Feature of MBQC

A clean separation between Classical and Quantum Control

L
®
O

Entanglement Graph

Execution Graph



No dependency Theorems

Pauli Measurements

Theorem. A unitary map is in Clifford iff 3 a pattern /

Implementing it with measurement angles 0 and g

Theorem. If pattern P with no dependent commands
implements unitary U, then U is in Clifford




Gottesman Knill Theorem

Efficient representation in terms of Pauli Operators

If the states of computation are restricted to the stabiliser states
and the operation over them to the Clifford group then

the corresponding quantum cOmputation
can be efficiently simulated using Classical Computing

/

Preserves the efficient representation



Graph State as Stabiliser States

Graph Stabilisers:
K; = X;(] ] Z;)

JENG(7)

K;ExNje = ExNye




Graph State as Stabiliser States

Graph Stabilisers:
K; = X;(] ] Z;)

JENG(7)

K;ExNje = ExNye




Graph State as Stabiliser States

Graph Stabilisers:
K; = X;(] ] Z;)

JENG(7)

K;ExNje = ExNye




Graph State as Stabiliser States

Graph Stabilisers:
K; = X;(] ] Z;)

JENG(7)

K;ExNje = ExNye




Classical Simulation

Corollary. Any MBQC pattern with only Pauli measurements
can be efficiently simulated using Classical Computing.

Quantum Pattern

Fixing*Angles

Classical Pattern

Model checking for a class of quantum protocols using PRISM

S. J. Gay, R. Nagarajan and N. Papanikolaou.



Parallelisation

a b c d e f g h i j k

Entanglement Graph

Signal Shifting

Execution Graph
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Reducing Depth

Depth of a pattern is the length of the longest feed-forward chain

Standardisation and Signal Shifting reduce depth.

Z5 X573 78 75 X5 [MS]% [M2]% 5, [M}) ] MS Eg FTT O

Zgb Xgd Z:b 732 752 x5¢ [MS %6 [MQ 152 , [Mf] M Eg
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Depth Complexity

All the models for QC are equivalent in computational power.

Theorem. There exists a logarithmic separation in depth complexity
between MBQC and circuit model.

Parity function: MQC needs 1 quantum layer and O(log n) classical layers whereas in the
circuit model the quantum depth is 2(logn)

A. Broadbent and E. Kashefi, TCS 07



Depth Complexity

Theorem. MBQC has the same parallel computational power
as quantum circuits with unbounded fan-out.

D. Browne, E. Kashefi, S. Perdrix TQC 07



Automated Parallelising Scheme

Theorem. Forward and backward translation between
circuit model and MQC can only decrease the depth.

| h\

Input v\\——-—-l> -'T_ J(O()
\\\\\A

l JB) I Rl
<= Output




Characterisation

Theorem. A pattern has depth d + 2 if and only if on any influencing path we
obtain P* N'=% P* after applying the following rewriting rule:

NN if VPr+#X(XY)*

NPfonf By oz -+ B N{ N  otherwise




The Magical Clifford Sequence

(H)odd(Hi(H)odd)*



Example

V1) 1

11

V2)
V3)

H 0412IH— —CVMJH
21 H 22 Hr—— - x

‘wn.—1>

¥n)

Can be parallelised to a pattern with depth 2




Determinism

A pattern is deterministic if all the branches are the same.

How to obtain global determinism via local controls

A necessary and sufficient condition for determinism
based on geometry of entanglement



Flow

Definition. An entanglement graph (G, I, O) has flow if there exists a map
f 1 O°— I€ and a partial order < over qubits

— () z~ f(x)
— (i) z =< f(x)
— (iii) for all y ~ f(z), we have z Xy

V. Danos and E. Kashefi Phys. Rev. A 07



Flow

Find
» a qubits to qubits assignment

» a matching partial order



Flow
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Find
» a qubits to qubits assignment

» a matching partial order



Constructive Determinism

Theorem. A pattern is uniformly and step-wise deterministic iff its graph has a flow.

Ticoe(X iy Mreng (£ ~qiy Ze M D EG



Pattern Design

Given a Unitary map we have to find

++ Entanglement graph, G(V,1,0)
++ Angles of measurements, {ao;}
+x Dependency structure

Si+sgtSetsctsa - SiTShTSFTS4TSh 5B 5 4+ Se+sc
Zy A X 4o

o o _x iy
MYM @ MO[MI™T)ontsrtsatsn[ag, 2)sgtsetsctsapg2)srtoatss

s Y T—0—L —B+o0+7
M3 [Me 25T [MZ]5eT5e[M, 2 ]0MPM, 2

EBCEABEjkEZ'jEhiEgthgEAfEefEdeEchbcEabEAb




Indirect Way

e Start with a circuit implementing U
* Translates each gate with the corresponding pattern

e Use measurements calculus algorithm to obtain the standard form



Direct Way

» Given U find G and {; } (Phase Map Decomposition)

* From the geometry of G obtain the feed-forward structure (Flow Condition)

e [f failed then back track




Phase Map Decomposition

Theorem. Every Unitary on n qubits can be decomposed as:

U:RooDVoP]c

Preparation map, Pjc: H;y — Hy where |x) — |[2) @ |+ - - +) e

Restriction map, Ry : Hy — Hp where |z) — |x)|p




Example
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An algorithm to generate all such decompositions

® Input: for sets V, I, and O and n = |I¢|:

% a unitary U on 'Hy;
«x complex numbers { z$? 1271 satisfying Equations:

U= <o ® @

2n/2|z()| =1
+x a permutation o over {1,-..,2" 1},
® OQutput: diagonal elements {dkk}ggl, such that di, = /2" xz(,f}, where:

«x+x the binary representation of p agrees with that of k£ after restriction to O;
«x g = k mod 21!
wx 1= o(|k/211]).



An algorithm to obtain the graph and the angles

® Input: A phase map decomposition for U

® Output: either (i) A graph G on V and {«o;};eco-,
or (ii) no matching graph exists.

1. For je{l,---,]O°}, consider the |V|-bit string z; that only has a 1 at
position 7, and set « such that e™*% = dj,, .

2. For all j,k, consider the |V|-bit string z;;, having a 1 only at positions j and
k. Check whether d,,,, = e @+ (the angles for the corresponding qubit
in O is taken to be 0).
— (i) if YES and the sign is —1, return E,; as an edge in G.
— (ii) if NO, no matching graph exists.



S0 we get:

A pattern with projections

(+al1 AZ12) Po

We need to replace projections with measurements and still obtain determinism




From Projection to Measurement

plte) —



From Projection to Measurement

Pl = Mz,

....
....
L

(2

|_|_04> L Q S S
P Ejj =M® X7 Ej X



From Noise to Determinism

A pattern is deterministic if all the branches are the same.

A necessary condition for determinism
based on geometry of entanglement is given by flow




Flow

Definition. An entanglement graph (G, I, O) has flow if there exists a map
f 1 O°— I€ and a partial order < over qubits

— () z~ f(x)
— (i) z =< f(x)
— (iii) for all y ~ f(z), we have z Xy




Flow

Theorem. A pattern with flow is uniformly and strongly deterministic.

Patterns with flow e Unitary embedding




Summary

Static structure/Entanglement

Understand 1 Analyse 1 Control

Quantum Computation



Future Directions - Specific tools for MBQC

Algorithmic Design
Direct synthesis of unitaries as patterns

Complexity Analysis
Parallelisation scheme and characterisation of low depth patterns

Security Protocols
Commitment and hiding by exploring the geometry of interaction

Model Checking and Formal Verification
To detect security leaks in protocols



ntal Blifx Mntum Compu;lng
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Experimental Blind Quantum Computing

Stefanie Barz
Vienna

Elham Kashefi,
Edinburgh

Anne Broadbent
Waterloo

Anton Zeilinger,
Vienna £ :

Philip Walther,
Vienna

Joe Fitzsimons,
Singapore



Cloud Computing

Feeds 1o Clients

Feeds to Chants
Feads from local \ London
Exchances and
Other sources \. BEN
Feeds from -
Exchanges and Y
Other sources

Feeds to Clients]

Secure Quantum/Classical
Communication/Computation
across untrusted networks

Frankfurt

Feods from local
Exchanges and
Other sources

! 2 L.:;‘

| Feads from local Feeds o Clents
Exchanges and
Othar sowrces
Feeds to Clients Feeds local
Exchanges and



Homomorphic Encryption

Rivest 78: Processing encrypted data without decrypting it first

® \/oting system
® Collision-resistance hash function
® Private information retrieval

= There are several efficient, partially homomorphic crypto-
systems

(RSA: for multiplication)

Gentry 09: A Lattice-based cryptosystem that is fully
homomorphic but inefficient and only computationally secure

Broadbent Fitzsimons Kashefi 09: A quantum based fully
homomorphic unconditionally secure cryptosystem with verification




Related \Works

* Arrighi and Salvail- Blind QC for a restricted set of classical functions

= Alice needs quantum memory, state preparation and measurement

= The classical function is public

= Polynomial security against individual attacks

e Andrew Childs - Secure assisted QC

= Alice needs quantum memory, state preparation and Pauli gates
= The unitary function is public

= |In general dishonest Bob cannot be detected

e Aharonov, Ben-Or and Eban - Interactive Prove for QC

= Alice has a constant-size quantum computer




: : Still requires 2N parameters
Blg Picture for a classical computer

to simulate it

= \” N\
I, \\
How do we verify the 7 \
Solution ? / \
: __NP
Can we verify it with a} V
classical Computer ? N
f \
/ Pl

YES ¢

Not all the problem in NP
can be computed blindly

Blind Computation with a BPP Alice
with BPP* Alice

* Abadi, Feigenbaum and Kilian



Universal Blind QC Protocol

> 22 al |
. | 1 {8 /

: f 10001110101 g U

Classical Computer
random single qubit generator -Perfect Privacy

1/v2(|0) + € [1))

0 =0,7/4,2n/4,...,7n/4

- Detection of malicious Bob

- Fault Tolerance



Our Technique

Measurement-based Quantum Computing
[Raussendorf, Briegel, 2001]

Measurement Calculus
[Danos, Kashefi, Panangaden 2007]

control computer P

/ / / / / / /

V OB B
measurement site 4 ’ ’

/
/
/ resource state

4 )

Program is encoded in the classical control computer
Computation Power is encoded in the entanglement




The First MBQC Protocol

measuremer

® Entanglement Resource
® Angles Of measurement
® Results of Measurements
® Dependencies




Encoding of the Angles

* One-qubit Teleportation

J(a)

V2

1

(

1 eia
1 —et@

X~ J(a) ()



Encoding of the Angles

s O . . . 1 1 eioz
ne-qubit Teleportation J(a) = VACEER

(i{(g{ ;\5 )

Z(0)]+) jiam -
+) A = J(@)(+)




Encoding of the Angles

- - 1 (1 el
* One-qubit Teleportation J(a) = (1 . )

> PR Te’

Hiding the Angles
(i{(g{ Q) ) -

+) X = J(a)(+))

Blindness. if (/ is chosen uniformly random and

independent of « then (« + ) is also uniformly random



Encoding of the Angles

* One-qubit Teleportation J(a) = \%(1 62?)

Hiding the measurement result



Universality

O-O-O0000 - OO0
@ @ @ @ —R. () R(8 ) R-(7')|— @ e @ @

& Hiding the entanglement resource

Generic Resource. Leaking only the dimension, i.e.

upper bound on the input size and the depth




Main Protocol

(X = (04620}




Blindness

Protocol P on input X = (U, {¢,,}) leaks at most L(X)
= The distribution of the classical information obtained by Bob is independent of X

=> Given the above distribution, the quantum state is fixed and independent of X

\_




Proof (L(X)=m,n)

= |ndependence of Bob’s classical information

-

0zy €Er {0, ,7m/4}
ey CR {Oa 1}

A
\5w,y - ¢az,y ™ e_aj,y T ﬁrg?’y)

= |ndependence of Bob’s quantum information for a fixed ¢

-

\_

_
].o Tx,y — O SO 5x,y — ¢x,y ]

-0, and |1z y) = —5(]0) + 2y %) |1

75

— _ !
20 Tx’y — 1 SO 5x’y S ¢$7y _

1
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Real Bob

PHOTONIC QUANTUM COMPUTATION

AND QUANTUM SIMULATION

Univ.-Ass. Dr. Philip Walther
Photonic Quantum Computation & Quantum Simulation

1 2
P——0—Q ) —{ R RA RN H > W) R H
1 2 3 4
l+) R/AF H
Linear® cluster 4 3
Horseshoel® cluster
(rotated180°)
> 1 12
l+>:1t — S i:i l+):liﬁzm— H :I:
l+) RA H F—> . " +) R H
3 4

(4)
Horseshoe® cluster Box@ cluster



Photonic ToolBox for QC

A
1)
Horizontal Vertical
photon photon

Hadamard gate

[H) M (IH)+V))/N2

22.5°

Arbitrary rotation gate

|HY M, M, %, alH)+ B|V)

—_—— >
il

Spontaneous Parametric Down-Conversion

BBO-Kristall

HAV)s+HVLIH),



Implementation = Think Small

= ol ol
zod ol
309 09

a0

ol o 5
ol ol oy o
aaEEﬂ
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Implementation = Ask Minimum

O)~0:)—195)—(03)
01 = 0s =0

random single qubit generator — =——)  random bell pair generator

control computer
No Feed-Forward J &

measurement site

/ ’
4 V:
/ resource state




Theory = Justify Implementation

Theorem. The post-selected partially rotated Blind QC protocol is still blind.




Experimental Set-up

I m Quarter/Half-wave Plate

I BBO crystal

o808 Polarization Controller

. Polarizing Beam Splitter
Filter







Experimental Set-up

¢ Post-selection 4-photons emission

Lab) = |[HHHH) 53, + ¢!t [ HHVV) 934 + ¢! VVHH) 934 — el

A a
Local Unitary

(| —|_ OO+>1234 ‘|_ 6193| _|_ 01—>1234 + €i92| _ 10—|—>1234 — ei(92+93)| —_ 11—>1234)

1
2 S. Barz, 18.0:

D100

3%) =




Blind Grover Algorithm

-

\_

N
Givenafunction f : {0,1}" — {0,1}

Find an x such that f(2) = 1

+>IRz(0 or ) R.(—7/2) 4 H I
+) R.(0 or 7) H

PN
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Blind Duetsch Algorithm
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Testing the quantum server

[Client can find out if the server possesses any quantum technology j

® Measurement of the probability
distributions for a fixed
measurement setting

e Comparison with the theoretical
expectations
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Testing the quantum server
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Real Stuft

Vazirani (07)

Can we test the validity of QM in the regime of
exponential-dimension Hilbert Space?




Interactive Proofs

What can a computationally unbounded entity prove to a mere mortal (BPP)?




Asking help without trusting




Interactive Proofs

Gottesman (04) - Aaronson $25 Challenge (07)

Does every language in the class BQP admit an interactive protocol
where the prover is in BQP and the verifier is in BPP?

Can we classically and efficiently verify
quantum devices ?



Interactive Proofs
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Classical Computer + 2 Provers + Entanglement = Quantum Computer




Interactive Proofs

Quantum Computer + Multi Interactive Proof =

Classical Computer + Multi Interactive Proof =
NEXP

[Kobayashi, Matsumoto, 2003]

Quantum Computer + Interactive Proof =
Classical Computer + Interactive Proof =

PSPACE
[Jain,Ji,Upadhyay, Watrous 2009]

parallel matrix multiplicative weights update method to a class of semidefinite programs



Entangled Provers

Classical Channel + Entanglement = Quantum Channel

Classical Computer + 2 Provers + Entanglement = Quantum Computer

Quantum Computer + Multi Interactive Proof + Entanglement =
Classical Computer + Multi Interactive Proof + Entanglement =

[Broadbent, Fitzsimons, Kashefi 2010]



Speculation

Quantum computing adds no power to the
Interactive proof system
even with multi provers and entanglement

~N

[ Entanglement = Quantum memoryJ




Interactive proof
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Interactive proof
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[ QMIP = MIP*]

We design an interactive protocol with only classical communication that
replaces a turn for the verifier in a given quantum interactive proof system
the new protocol requires only classical resources for the verifier.
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