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Quantum Information Processing

A cross-disciplinary field of great importance from both 
fundamental and technological perspectives.

It has changed our perspective on the foundation of 

Information Theory, Computation and Physics.



Birth of QIP

Quantum physics is also reversible, as the reverse-time 
evolution specified by the unitary operator always exists.

It is possible to perform computation both 
logically and thermodynamically reversible.



Quantum Mechanics in a nutshell

• Data: Unit vector in  a Hilbert space (qubit)

• Processing: Unitary transformation 

• Result: Projective measurement 

• Composite System: Tensor product



Quantum Transition Systems 
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Entanglement

Non-local Correlation

Fundamental Feature of 
Quantum Mechanics

➡  Computation
➡  Information
➡  Cryptography



Models of QC
Di�erent Models

Quantum Circuit Model Measurement-based QC
Quantum Cellular Automata Adiabatic QC
Quantum Turing Machine Topological QC

Quantum Categorical Framework
Quantum Processes Calculus

Quantum Programming Languages
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An end-to-end Story

• Physics  - Ising Hamiltonian, one-way QC 

• Formal Methods - Measurement Calculus

• Parallelism and Determinism

• Protocol Design - Universal Blind QC

• Implementation - Foundation of Quantum Mechanics

Broadbent, Browne, Danos, Kashefi, Mhalla, Perdrix, 
Phys. Rev. A. 2006, TCS 2007, New. J. Physics 2008, TQC 2009

Broadbent, Fitzsimons, Kashefi FOCS 2009

Bartz, Kashefi, Broadbent, Fitzsimons, Zeilinger, Walther, Science 2012 

Raussendorf and Briegel Phys. Rev. Lett. 2000

Danos, Kashefi, Panangaden JACM 2007



Measurement-based QC

Measurements play a central role. 

Clear separation between classical and quantum parts of computation

Scalable implementation

Entanglement

Clear separation between creation and consumption of resources
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Basic Commands

• New qubits, to prepare the auxiliary qubits: 

• Entanglements, to build the quantum channel:

• Measurements, to propagate(manipulate) qubits:  

• Corrections, to make the computation deterministic:
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2-state System 
2-state system C2

The canonical basis, (1,0), (0,1), also called the computational
basis, is usually denoted |0⇧, |1⇧. It is orthonormal by definition of
⌅x, y⇧C2.

Another orthonormal basis:

|±⇧ := 1⌥
2
(|0⇧± |1⇧)

and yet another:

|±�⇧ := 1⌥
2
(|0⇧± ei�|1⇧)

The preparation map N�
i is defined to be:

|+�⇧ ⇥ : Hn ⇤ C2 ⇥ Hn
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Maps over2-state system C2
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Pauli Spin Matrices

Maps over C2

We write X and Z for the Pauli spin matrices:
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P (�)⇥ = P (��).
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The two qubit state

Bases need not be made of decomposable elements, they
can consists of entangled states. 

The 2-qubit space: C2 ⇥ C2
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Pauli and Clifford Pauli and Cli�ord

Define the Pauli group over A as the closure of {Xi, Zi | 1 ⌅ i ⌅ n}
under composition and ⇥. These are all local maps (corrections).

Define the Cli�ord group over A as the normalizer of the Pauli
group, that is to say the set of unitaries f over A such that for all g

in the Pauli group, fgf�1 is also in the Pauli group.

Entanglement: ⇧Zij is in Cli�ord, since:

• ⇧ZijXi = XiZj ⇧Zij
• ⇧ZijZi = Zi⇧Zij
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Projective Measurement on 

Complete Projective Measurement

A complete measurement on Hn is given by an orthonormal basis
on Hn, B = {⇥a} which defines a decomposition Hn = �aEa of Hn

into orthogonal (1-dimensional) subspaces Ea.

Writing |⇥a �⇥a| : Hn ⇤ Ea for the projections to Ea, one defines:

MB : Hn ⇤ �aEa : |� ⌅⇤ �a�⇥a, � |⇥a 

• Which a is chosen is observable, and is called the outcome of the
measurement
• The probability to go from |� to |⇥a �⇥a|(|� ) is defined as
�⇥a, � /��, � (by construction, they add all to 1).
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Destructive Measurement 
Destructive measurements

Given a complete measurement over A, as A = {⇥a}, one can
extend it to an incomplete measurement on A�B, with
components given by |⇥a�⌥⇥a| : A�B ⇤ B.

• We write M� for the 1-qubit destructive measurements
associated to {|+��}.

Members of the M� family are called xy-plane measurements.
These are the ones we use for 1WQC.

1-qubit destructive measurement
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Unitary Action
U-action

If U maps orthonormal basis B to A then:
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A formal language

Brief Article

The Author

September 3, 2007
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Commands

• Ni prepares qubit i in |+⇤

• M�
i projects qubit i onto basis states 1⇧

2
(|0⇤± ei�|1⇤)

— measurement outcome is si = 0,1

• Eij is controlled-Z applied at qubits i and j

• Local Pauli corrections: Xi, Zi

Feed forward. measurements and corrections commands are
allowed to depend on previous measurements outcomes.
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The M and C commands may be parameterised by a signal, that is
an expression of the form
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Patterns of Computation

Patterns combination

• Patterns may be composed if V1 ⇧ V2 = O1 = I2.

�� H ⇤ H : Xs2
3 M0

2E23 Xs1
2 M0

1E12 implements
H ⇤H = I.

• Patterns may be tensored if V1 ⇧ V2 = I1 ⇧ I2 = O1 ⇧O2 = �.

�� H⇥ H : Xs3
4 M0

3E34 Xs1
2 M0

1E12 implements H ⇥H.

Patterns of computation

The basic computation unit consists of finite lists:

(V, I, O, An . . . A1)

* Inputs and outputs may overlap, and this leads to optimisation,
in the sense of using fewer qubits.

Example: pattern H := ({1,2}, {1}, {2}, Xs1
2 M0

1E12N0
2) implements

Hadamard H.

Patterns of computation

The basic computation unit consists of finite lists:

(V, I, O, An . . . A1)

* Inputs and outputs may overlap, and this leads to optimisation,
in the sense of using fewer qubits.

Example: pattern H := ({1,2}, {1}, {2}, Xs1
2 M0

1E12N0
2) implements

Hadamard H.

Sequential or Parallel Composition



Definiteness ConditionsPattern conditions

One subjects patterns to various conditions:
—[(D0)] no command depends on outcomes not yet measured
—[(D1)] no command acts on a qubit already measured
—[(D2)] a qubit i is measured if and only if i is not an output

We assume that all patterns satisfy the definiteness conditions
(D0), (D1) and (D2)=:(D)



Example: Implementing H

Lets us back to the pattern H := ({1,2}, {1}, {2}, Xs1
2 Mx

1E12N2).

Starting with input q = (a|0⇧+ b|1⇧)|+⇧, one has two computation
branches, branching at M0

1 :

(a|0⇧+ b|1⇧)|+⇧ E12�⇥ 1�
2
(a|00⇧+ a|01⇧+ b|10⇧ � b|11⇧)

M0
1�⇥

�
⌅⌅⇤

⌅⌅⇥

1
2((a + b)|0⇧+ (a� b)|1⇧) s1 = 0

1
2((a� b)|0⇧+ (a + b)|1⇧) s1 = 1

X
s1
2�⇥ 1

2((a + b)|0⇧+ (a� b)|1⇧)

and since ⌥a + b⌥2 + ⌥a� b⌥2 = 2(⌥a⌥2 + ⌥b⌥2), both transitions
happen with equal probabilities 1

2.

Determinism Theorem

Theorem

A pattern P is uniformly deterministic i� its geometry has flow.

Proof.
�

3

2

2

1

4

3

3

s1

s1

Z

Z

Z

s1

s1

X
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Example: Implementing H

Lets us back to the pattern H := ({1,2}, {1}, {2}, Xs1
2 Mx

1E12N2).

Starting with input q = (a|0⇧+ b|1⇧)|+⇧, one has two computation
branches, branching at M0

1 :

(a|0⇧+ b|1⇧)|+⇧, � E12�⇥ 1�
2
(a|00⇧+ a|01⇧+ b|10⇧ � b|11⇧), �

M0
1�⇥

�
⌅⌅⇤

⌅⌅⇥

1
2((a + b)|0⇧+ (a� b)|1⇧), �[0/0]

1
2((a� b)|0⇧+ (a + b)|1⇧), �[1/0]

and since ⌥a + b⌥2 + ⌥a� b⌥2 = 2(⌥a⌥2 + ⌥b⌥2), both transitions
happen with equal probabilities 1

2.

Starting with the input state  

H



State space

Besides quantum states which are vectors in some HV , one needs a

classical state recording the outcomes of the successive

measurements one does in a pattern:

S :=
⋃

V,W HV × ZW
2

where V , W range over finite sets.

In other words a computation state is a pair q, Γ, where q is a

quantum state and Γ is a map from some W to the outcome space

Z2. We call this classical component Γ an outcome map and

denote by ∅ the unique map in Z
∅
2 .

State space

Besides quantum states which are vectors in some HV , one needs a

classical state recording the outcomes of the successive

measurements one does in a pattern:

S :=
⋃

V,W HV × ZW
2

where V , W range over finite sets.

In other words a computation state is a pair q, Γ, where q is a

quantum state and Γ is a map from some W to the outcome space

Z2. We call this classical component Γ an outcome map and

denote by ∅ the unique map in Z
∅
2 .

State Space



Commands as actions (continued)

We may now see each of our commands as acting on S:

q, Γ
Nα

i−→ q ⊗ |+α〉i, Γ

q, Γ
Eij−→ ∧Zijq, Γ

q, Γ
Xs

i−→ X
sΓ
i q, Γ

q, Γ
Zs

i−→ Z
sΓ
i q, Γ

q, Γ
t[Mα

i ]s
−→ 〈+αΓ|iq, Γ[0/i]

q, Γ
t[Mα

i ]s
−→ 〈−αΓ|iq, Γ[1/i]

where αΓ = (−1)sΓα + tΓπ.

Condition (D) makes sure that the command indices are in V , and

sΓ and tΓ are always well-defined.

Operational Semantics



Computation branches

Let P be a pattern with computation space V , inputs I, outputs O

and command sequence An . . . A1.

A complete pattern computation starts with some input state q in

HI, together with the empty outcome map ∅. The input state q is

then tensored as specified by the preparation instructions (which

can always be pushed to the start) with as many |+α〉s as there are

non-inputs in V , so as to obtain a state in the full space HV .

Then other commands in P are applied in sequence:

HI

!!

"" HO

HI × Z
∅
2

prep
"" HV × Z

∅
2

"" HO × Z
V "O
2

##

Denotational Semantics

Determinism

Let As = Cs�sU be a branch map, the pattern realises the
cptp-map

T (⇥) :=
�

s

As⇥A†
s

Elham Kashefi Information flow for graph states Recent developments and new applications

Density operator : A probability distribution over quantum states 



Computation branches

Let P be a pattern with computation space V , inputs I, outputs O

and command sequence An . . . A1.

A complete pattern computation starts with some input state q in

HI, together with the empty outcome map ∅. The input state q is

then tensored as specified by the preparation instructions (which

can always be pushed to the start) with as many |+α〉s as there are

non-inputs in V , so as to obtain a state in the full space HV .

Then other commands in P are applied in sequence:

HI

!!

"" HO

HI × Z
∅
2

prep
"" HV × Z

∅
2

"" HO × Z
V "O
2

##

Denotational Semantics

A pattern is strongly deterministic if all the branch maps are equal.

Theorem. A strongly determinist pattern realises a unitary embedding.
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Université Paris 7 & CNRS, 175 Rue du Chevaleret, 75013 Paris, France

Elham Kashefi
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

Christ Church College, University of Oxford, OX1 1DP, Oxford, UK

Prakash Panangaden
School of Computer Science, McGill University, Montreal, Quebec, H3A 2A7, Canada

(Dated: May 31, 2007)

We present a new set of generators for unitary maps over C
2 which differs from the traditional rotation-based

generating set in that it uses a single-parameter family of unitaries J(α). These generators are implementable
in the one-way model [Raussendorf et al. Phys. Rev. Letter 86, 5188 (2001)] using only two qubits, and lead to

both parsimonious and robust implementations of general unitaries. As an illustration, we give an implementa-

tion of the controlled-U family which uses only 14 qubits, and has a 2-colorable underlying entanglement graph

(known to yield robust entangled states).

PACS numbers: 03.67.Lx, 03.67.-a, 03.65.Ta

I. INTRODUCTION

In this paper we introduce a simple parameterized fam-

ily J(α) that generates all unitaries over C2. By adding the

unitary operator controlled-Z (∧Z) defined over C2 ⊗ C2,

one then obtains a set of generators for all unitary maps over

⊗nC2. Not only are these generators remarkably simple, but

they also integrate neatly with measurement-based quantum

computing models. Such models [1–9], and notably the one-

way model [1–3], have been recently brought to the fore, be-

cause they allow for easier and scalable physical implementa-

tions [10–15].

Both J(α) and ∧Z , have simple realizations in the one-
way model, using only two qubits. As a consequence, one

obtains an implementation of the controlled-U (∧U ) family of
unitaries, using only 14 qubits. Combining these as building

blocks, any general unitary can be obtained by using relatively

few auxiliary qubits.

Comparable realizations were already obtained by using a

specific subclass of entangled states, known as cluster states,

which need far more auxiliary qubits to implement the ∧U
family. Special instances of this were known before [3], for

example, with the controlled phase gate, but, as far as we

know, this is the best realization for the general controlled

unitary gate. Furthermore, cluster states do have another in-

teresting property, namely that their underlying entanglement

graphs have no odd-length cycles, and such states have been

shown to be robust against decoherence [16]. Fortunately, our

building blocks also belong to this larger class, so that by us-

ing them nothing is lost in terms of robustness, while, as noted

above, fewer qubits are needed.

II. A UNIVERSAL SET FOR UNITARIES

Let us prove first that the following one-parameter family

J(α) generates all unitary operators on C2:

J(α) := 1√
2

(

1 eiα

1 −eiα

)

We can see already that the Pauli spin matrices, phase and

Hadamard operators can be described using only J(α):

X = J(π)J(0) P (α) = J(0)J(α)
Z = J(0)J(π) H = J(0)

P (α) = J(0)J(α)
H = J(0)
Hi = J(π

2
)

We will also use the following equations:

J(0)2 = I
J(α)J(0)J(β) = J(α + β)
J(α)J(π)J(β) = eiαZ J(β − α)

The second and third equations are referred to as the additiv-

ity and subtractivity relations. Additivity gives another useful

pair of equations:

XJ(α) = J(α + π) = J(α)Z (1)

Any unitary operator U on C2 can be written:

U = eiαJ(0)J(β)J(γ)J(δ)

for some α, β, γ and δ in R. We will refer to this as a J-
decomposition of U .

Universal Gates
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Both J(α) and ∧Z , have simple realizations in the one-
way model, using only two qubits. As a consequence, one
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unitaries, using only 14 qubits. Combining these as building

blocks, any general unitary can be obtained by using relatively

few auxiliary qubits.

Comparable realizations were already obtained by using a

specific subclass of entangled states, known as cluster states,

which need far more auxiliary qubits to implement the ∧U
family. Special instances of this were known before [3], for

example, with the controlled phase gate, but, as far as we

know, this is the best realization for the general controlled

unitary gate. Furthermore, cluster states do have another in-

teresting property, namely that their underlying entanglement

graphs have no odd-length cycles, and such states have been

shown to be robust against decoherence [16]. Fortunately, our

building blocks also belong to this larger class, so that by us-

ing them nothing is lost in terms of robustness, while, as noted

above, fewer qubits are needed.
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Let us prove first that the following one-parameter family

J(α) generates all unitary operators on C2:

J(α) := 1√
2

(

1 eiα

1 −eiα

)

We can see already that the Pauli spin matrices, phase and

Hadamard operators can be described using only J(α):

X = J(π)J(0) P (α) = J(0)J(α)
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We will also use the following equations:

J(0)2 = I
J(α)J(0)J(β) = J(α + β)
J(α)J(π)J(β) = eiαZ J(β − α)

The second and third equations are referred to as the additiv-

ity and subtractivity relations. Additivity gives another useful

pair of equations:

XJ(α) = J(α + π) = J(α)Z (1)

Any unitary operator U on C2 can be written:

U = eiαJ(0)J(β)J(γ)J(δ)
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decomposition of U .
To prove this note that all three Pauli rotations are express-

ible in terms of J(α):

Rx(α) = e−i α
2 J(α)J(0) (2)

Ry(α) = e−i α
2 J(0)J(

π

2
)J(α)J(−

π

2
) (3)

Rz(α) = e−i α
2 J(0)J(α) (4)

A universal set for unitaries on C2

J(�) := 1⇥
2

�
1 ei�

1 �ei�

⇥

Some nice equations:

J(�)J(0)J(⇥) = J(� + ⇥)
J(�)J(⇤)J(⇥) = ei�Z J(⇥ � �)
XJ(�) = J(� + ⇤) = J(�)Z
H = J(0)
P (�) = J(0)J(�)

A universal set for unitaries on C2

J(�) := 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥Z :=

⇤

⌥⌥⌥⇧

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

⌅

���⌃

Some nice equations:



Generating Patterns

The trivial implementations of our unitary generators:

�Z := E12

Note that:
— These patterns are indeed among the simplest possible
— There is only one single dependency overall.
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⇤U decomposition

One has:

⇤U12 = J0
1J�⇥

1 J0
2J⇥+⇧

2 J
�⇤

2
2 J

�⇧
2

2 J0
2 ⇤Z12J

⇧
2
2J

⇤
2
2J

�⇧�⌅�⇥
2

2 J0
2 ⇤Z12J

�⇥+⌅�⇧
2

2

where:

�⇥ = � + ⇥+⇤+⌅
2

U = ei�J(0)J(⇥)J(⇤)J(⌅)
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Example (ctrl-U)



Wild controlled-U

XsB
C M0

BEBCXsA
B M��⇥

A EABX
sj
k M0

j EjkXsi
j M�⇥�⇧

i Eij

X
sh
i M

⇤
2
h EhiX

sg
h M

⇧
2
g EghX

sf
g M0

f EfgEAfXse
f M

�⇧
2

e Eef

X
sd
e M

�⇤
2

d EdeX
sc
d M

⇧+⌅+⇥
2

c EcdX
sb
c M0

b EbcEAbX
sa
b M

⇥�⌅+⇧
2

a Eab

Example (ctrl-U)

Wild Pattern

Standard controlled-U

Z
si+sg+se+sc+sa
k X

sj+sh+sf+sd+sb
k XsB
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Measurement Calculus

Theorem. The re-writing system is confluent and terminating.

5 The measurement calculus

We turn to the next important matter of the paper, namely standardization. The idea is quite
simple. It is enough to provide local pattern-rewrite rules pushing Es to the beginning of the
pattern and Cs to the end. The crucial point is to justify using the equations as rewrite rules.

5.1 The equations

The expressions appearing as commands are all linear operators on Hilbert space. At first glance,
the appropriate equality between commands is equality as operators. For the deterministic com-
mands, the equality that we consider is indeed equality as operators. This equality implies equality
in the denotational semantics. However, for measurement commands one needs a stricter definition
for equality in order to be able to apply them as rewriting rules. Essentially we have to take into
the account the e�ect of di�erent branches that might result from the measurement process. The
precise definition is below.

Definition 9 Consider two patterns P and P � we define P = P � if and only if for any branch s,
we have APs = AP

�
s , where APs and AP

�
s are the branch map As defined in Section 3.2.

The first set of equations gives the means to propagate local Pauli corrections through the
entangling operator Eij .

EijX
s
i = Xs

i Zs
j Eij (9)

EijX
s
j = Xs

j Zs
i Eij (10)

EijZ
s
i = Zs

i Eij (11)
EijZ

s
j = Zs

j Eij (12)

These equations are easy to verify and are natural since Eij belongs to the Cli�ord group, and
therefore maps under conjugation the Pauli group to itself. Note that, despite the symmetry of the
Eij operator qua operator, we have to consider all the cases, since the rewrite system defined below
does not allow one to rewrite Eij to Eji. If we did allow this the reqrite process could loop forever.

A second set of equations allows one to push corrections through measurements acting on the
same qubit. Again there are two cases:

t[M�
i ]sXr

i = t[M�
i ]s+r (13)

t[M�
i ]sZr

i = t+r[M�
i ]s (14)

These equations follow easily from equations (4) and (5). They express the fact that the measure-
ments M�

i are closed under conjugation by the Pauli group, very much like equations (9),(10),(11)
and (12) express the fact that the Pauli group is closed under conjugation by the entanglements
Eij .

Define the following convenient abbreviations:

[M�
i ]s := 0[M�

i ]s, t[M�
i ] := t[M�

i ]0, M�
i := 0[M�

i ]0,
Mx

i := M0
i , My

i := M
�
2

i
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Pushing correction to the end

Theorem. An MQC model admits a standardisation procedure 
iff the E operator is normaliser of all the C operators.



General rotation

From J-decomposition:

R(�, ⇥, ⇤) = J(0)J(�)J(⇥)J(⇤)

By composition and then standardization:
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3 M⇥

2Xs1
2 Zs1

3 M⇤
1E123 �MX
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4 M�

3 E34Xs2
3 Z3

s1[M
⇥
2 ]s1M⇤
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4 M�

3 Xs2
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s1Z
s2
4 [M⇥

2 ]s1M⇤
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�
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�
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1E12345
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Algorithm

commands. According to the definiteness condition, no command acts on a qubit not yet prepared,
hence the first step of the above algorithm is based on trivial commuting rules; the same is true
for the last step as no entanglement command can act on a qubit that has been measured. Both
steps can be done in O(N2). The real complexity of the algorithm comes from the second step
and the EX commuting rule. In the worst case scenario, commuting an X correction to the left
might create O(N2) other Z corrections, each of which has to be commuted to the left themselves.
Thus one can have at most O(N3) new corrections, each of which has to be commuted past O(N2)
measurement or entanglement commands. Therefore the second step, and hence the algorithm, has
a worst case complexity of O(N5).

We conclude this subsection by emphasizing the importance of the EMC form. Since the
entanglement can always be done first, we can always derive the entanglement resource needed for
the whole computation right at the beginning. After that only local operations will be performed.
This will separate the analysis of entanglement resource requirements from the classical control.
Furthermore, this makes it possible to extract the maximal parallelism for the execution of the
pattern since the necessary dependecies are explicitly expressed, see the example in section 6 for
further discussion. Finally, the EMC form provides us with tools to prove general theorems about
patterns, such as the fact that they always compute cptp-maps and the expressiveness theorems of
section 7.

5.4 Signal shifting

One can extend the calculus to include the signal shifting command St
i . This allows one to dispose

of dependencies induced by the Z-action, and obtain sometimes standard patterns with smaller
computational depth complexity, as we will see in the next section which is devoted to examples.

t[M�
i ]s � St

i [M
�
i ]s

Xs
j St

i � St
iX

s[t+si/si]
j

Zs
j S

t
i � St

iZ
s[t+si/si]
j

t[M�
j ]sSr

i � Sr
i

t[r+si/si][M�
j ]s[r+si/si]

Ss
i S

t
j � St

jS
s[t+sj/sj ]
i

where s[t/si] denotes the substitution of si with t in s, s, t being signals. Note that when we write
a t explicitly on the upper left of an M , we mean that t ⇥= 0. The first additional rewrite rule was
already introduced as equation (6), while the other ones merely propagate the signal shift. Clearly
one can dispose of St

i when it hits the end of the pattern command sequence. We will refer to this
new set of rules as �S . Note that we always apply first the standardization rules and then signal
shifting, hence we do not need any commutation rule for E and S commands.

It is important to note that both theorem 2 and 3 still hold for this extended rewriting system.
In order to prove termination one can start with the EMC form and then adapt the proof of
Theorem 2 by defining a depth function for a signal shift similar to the depth of a correction
command. As with the correction, signal shifts can also be commuted to the left hand side of a
command sequence. Now our measure can be modified to account for the new signal shifting terms
and shown to be decreasing under each step of signal shifting. Confluence can be also proved from
local confluence using again Newman’s Lemma [Bar84]. One typical critical pair is t[M�

j ]Ss
i where

i appears in the domain of signal t and hence the signal shifting command Ss
i will have an e�ect on

the measurement. Now there are two possible ways to rewrite this pair, first, commute the signal
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A must operate on overlapping qubits, else one may apply a free commutation rule, and A may
not be a C since in this case one may apply an EC rewrite. The only remaining case is when A
is of type M , overlapping E’s qubits, but this is what condition (D1) forbids, and since (D1) is
preserved under rewriting, this contradicts the assumption. The latter case is even simpler. �

We have shown that under rewriting any pattern can be put in EMC form, which is what we
wanted. We actually proved more, namely that the standard form obtained is unique. However,
one has to be a bit careful about the significance of this additional piece of information. Note first
that uniqueness is obtained because we dropped the CC and EE free commutations, thus having a
rigid notion of command sequence. One cannot put them back as rewrite rules, since they obviously
ruin termination and uniqueness of standard forms.

A reasonable thing to do, would be to take this set of equations as generating an equivalence
relation on command sequences, call it ⇤, and hope to strengthen the results obtained so far, by
proving that all reachable standard forms are equivalent.

But this is too naive a strategy, since E12X1X2 ⇤ E12X2X1, and:

E12Xs
1Xt

2 ⌅� Xs
1Zs

2X
t
2Z

t
1E12

⇤ Xs
1Zt

1Z
s
2X

t
2E12

obtaining an expression which is not symmetric in 1 and 2. To conclude, one has to extend ⇤
to include the additional equivalence Xs

1Zt
1 ⇤ Zt

1X
s
1 , which fortunately is sound since these two

operators are equal up to a global phase. Thus, these are all equivalent in our semantics of patterns.
We summarize this discussion as follows.

Definition 12 We define an equivalence relation ⇤ on patterns by taking all the rewrite rules as
equations and adding the equation Xs

1Zt
1 ⇤ Zt

1X
s
1 and generating the smallest equivalence relation.

With this definition we can state the following proposition.

Proposition 13 All patterns that are equivalent by ⇤ are equal in the denotational semantics.

This⇤ relation preserves both the type (the (V, I, O) triple) and the underlying entanglement graph.
So clearly semantic equality does not entail equality up to ⇤. In fact, by composing teleportation
patterns one obtains infinitely many patterns for the identity which are all di�erent up to ⇤. One
may wonder whether two patterns with same semantics, type and underlying entanglement graph
are necessarily equal up to ⇤. This is not true either. One has J(�)J(0)J(⇥) = J(� + ⇥) =
J(⇥)J(0)J(�) (where J(�) is defined in Section 4), and this readily gives a counter-example.

We can now formally describe a simple standardization algorithm.

Algorithm 1 Input: A pattern P on |V | = N qubits with command sequence AM · · ·A1.
Output: An equivalent pattern P � in NEMC form.

1. Commute all the preparation commands (new qubits) to the right side.

2. Commute all the correction commands to the left side using the EC and MC rewriting rules.

3. Commute all the entanglement commands to the right side after the preparation commands.

Note that since each qubit can be entangled with at most N � 1 other qubits, and can be
measured or corrected only once, we have O(N2) entanglement commands and O(N) measurement
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Worst Case Complexity:                 where      is the number of qubits in the given pattern
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We present a new set of generators for unitary maps over C
2 which differs from the traditional rotation-based

generating set in that it uses a single-parameter family of unitaries J(α). These generators are implementable
in the one-way model [Raussendorf et al. Phys. Rev. Letter 86, 5188 (2001)] using only two qubits, and lead to

both parsimonious and robust implementations of general unitaries. As an illustration, we give an implementa-

tion of the controlled-U family which uses only 14 qubits, and has a 2-colorable underlying entanglement graph

(known to yield robust entangled states).

PACS numbers: 03.67.Lx, 03.67.-a, 03.65.Ta

I. INTRODUCTION

In this paper we introduce a simple parameterized fam-

ily J(α) that generates all unitaries over C2. By adding the

unitary operator controlled-Z (∧Z) defined over C2 ⊗ C2,

one then obtains a set of generators for all unitary maps over

⊗nC2. Not only are these generators remarkably simple, but

they also integrate neatly with measurement-based quantum

computing models. Such models [1–9], and notably the one-

way model [1–3], have been recently brought to the fore, be-

cause they allow for easier and scalable physical implementa-

tions [10–15].

Both J(α) and ∧Z , have simple realizations in the one-
way model, using only two qubits. As a consequence, one

obtains an implementation of the controlled-U (∧U ) family of
unitaries, using only 14 qubits. Combining these as building

blocks, any general unitary can be obtained by using relatively

few auxiliary qubits.

Comparable realizations were already obtained by using a

specific subclass of entangled states, known as cluster states,

which need far more auxiliary qubits to implement the ∧U
family. Special instances of this were known before [3], for

example, with the controlled phase gate, but, as far as we

know, this is the best realization for the general controlled

unitary gate. Furthermore, cluster states do have another in-

teresting property, namely that their underlying entanglement

graphs have no odd-length cycles, and such states have been

shown to be robust against decoherence [16]. Fortunately, our

building blocks also belong to this larger class, so that by us-

ing them nothing is lost in terms of robustness, while, as noted

above, fewer qubits are needed.

II. A UNIVERSAL SET FOR UNITARIES

Let us prove first that the following one-parameter family

J(α) generates all unitary operators on C2:

J(α) := 1√
2

(

1 eiα

1 −eiα

)

We can see already that the Pauli spin matrices, phase and

Hadamard operators can be described using only J(α):

X = J(π)J(0) P (α) = J(0)J(α)
Z = J(0)J(π) H = J(0)

We will also use the following equations:

J(0)2 = I
J(α)J(0)J(β) = J(α + β)
J(α)J(π)J(β) = eiαZ J(β − α)

The second and third equations are referred to as the additiv-

ity and subtractivity relations. Additivity gives another useful

pair of equations:

XJ(α) = J(α + π) = J(α)Z (1)

Any unitary operator U on C2 can be written:

U = eiαJ(0)J(β)J(γ)J(δ)

for some α, β, γ and δ in R. We will refer to this as a J-
decomposition of U .
To prove this note that all three Pauli rotations are express-

ible in terms of J(α):

Rx(α) = e−i α
2 J(α)J(0) (2)

Ry(α) = e−i α
2 J(0)J(

π

2
)J(α)J(−

π

2
) (3)

Rz(α) = e−i α
2 J(0)J(α) (4)
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The Key Feature of MBQC

A clean separation between Classical and Quantum Control 
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No dependency Theorems

Theorem. A unitary map is in Clifford iff  ∃ a pattern 
implementing it with measurement angles 0 and   

5 The measurement calculus

We turn to the next important matter of the paper, namely standardization. The idea is quite
simple. It is enough to provide local pattern-rewrite rules pushing Es to the beginning of the
pattern and Cs to the end. The crucial point is to justify using the equations as rewrite rules.

5.1 The equations

The expressions appearing as commands are all linear operators on Hilbert space. At first glance,
the appropriate equality between commands is equality as operators. For the deterministic com-
mands, the equality that we consider is indeed equality as operators. This equality implies equality
in the denotational semantics. However, for measurement commands one needs a stricter definition
for equality in order to be able to apply them as rewriting rules. Essentially we have to take into
the account the effect of different branches that might result from the measurement process. The
precise definition is below.

Definition 9 Consider two patterns P and P ′ we define P = P ′ if and only if for any branch s,
we have AP

s = AP ′

s , where AP
s and AP ′

s are the branch map As defined in Section 3.2.

The first set of equations gives the means to propagate local Pauli corrections through the
entangling operator Eij.

EijX
s
i = Xs

i Zs
j Eij (9)

EijX
s
j = Xs

j Zs
i Eij (10)

EijZ
s
i = Zs

i Eij (11)

EijZ
s
j = Zs

j Eij (12)

These equations are easy to verify and are natural since Eij belongs to the Clifford group, and
therefore maps under conjugation the Pauli group to itself. Note that, despite the symmetry of the
Eij operator qua operator, we have to consider all the cases, since the rewrite system defined below
does not allow one to rewrite Eij to Eji. If we did allow this the reqrite process could loop forever.

A second set of equations allows one to push corrections through measurements acting on the
same qubit. Again there are two cases:

t[Mα
i ]sXr

i = t[Mα
i ]s+r (13)

t[Mα
i ]sZr

i = t+r[Mα
i ]s (14)

These equations follow easily from equations (4) and (5). They express the fact that the measure-
ments Mα

i are closed under conjugation by the Pauli group, very much like equations (9),(10),(11)
and (12) express the fact that the Pauli group is closed under conjugation by the entanglements
Eij .

Define the following convenient abbreviations:

[Mα
i ]s := 0[Mα

i ]s, t[Mα
i ] := t[Mα

i ]0, Mα
i := 0[Mα

i ]0,

Mx
i := M0

i , My
i := M

π
2

i
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Quantum Pacman

Generalized Flow and Determinism 6

— (F2) i < f(i) ,
— (F3) ∀k ∈ NG(f(i)) \ {i} we have i < k .

As one can see, a flow consists of two structures: a function f over vertices and a
matching partial order over vertices. In order to obtain a deterministic pattern for an open
graph state with flow, dependent corrections will be defined based on function f . The order
of the execution of the commands is given by the partial order induced by the flow. The
matching properties between the function f and the partial order > will make the obtained
pattern runnable. Roughly speaking, flow is a collection of disjoint input-output paths with
no loops, as shown in Figure 6. This intuition is indeed the key concept in a flow finding
algorithm [16, 17].

Theorem 1 [1] Suppose the open graph state (G, I, O, λ), such that ∀i ∈ Oc, λ(i) = (X, Y ),
has flow (f, >), then the pattern:

Pf,G :=
∏>

i∈Oc

(

Xsi

f(i)Z
si

NG(f(i))\{i} M (X,Y ),αi

i

)

EG NIc ,

where the product follows the dependency order >, is runnable, uniformly and strongly
deterministic, and realizes the unitary embedding:

UG :=
(
∏

i∈Oc〈+(X,Y ),αi
|i
)

EGNIc .

The above theorem provides a sufficient condition for determinism for the one-way model
considering only measurements in the (X, Y ) plane, which encompasses for example, the
measurement patterns proposed [2, 18]. Nevertheless, it can be useful to construct patterns
which contain measurements in other planes [9], and this arises naturally when one uses the
graph transformation rules associated with Pauli measurements [5] to reduce the size of a
pattern. As we shall describe in this article one can extend the notation of flow to obtain a
necessary and sufficient condition considering measurements in all the (X, Y ), (X, Z) and
(Y, Z) planes. This will lead to a full characterization of deterministic computation in the
MQC models. As a result we also obtain a tight bound on depth complexity that improves the
presented results in [15].

3. Generalized Flow

In order to describe the motivation behind our construction of the generalized flow we first
briefly explain the main idea behind the proof of the flow theorem (Theorem 1). Recall that the
graph stabiliser [5] at qubit i is defined as Ki := Xi(

∏

j∈NG(i) Zj) and one has the following
relation for all i ∈ Ic:

KiEGNIc = EGNIc . (1)

Note that the above equation is slightly more general than the common graph stabiliser [5] as
it can be applied to open graph states where input qubits are prepared in arbitrary states. Let i
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considering only measurements in the (X, Y ) plane, which encompasses for example, the
measurement patterns proposed [2, 18]. Nevertheless, it can be useful to construct patterns
which contain measurements in other planes [9], and this arises naturally when one uses the
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Corollary. Any MBQC pattern with only Pauli measurements 
can be efficiently simulated using Classical Computing.
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commands. According to the definiteness condition, no command acts on a qubit not yet prepared,
hence the first step of the above algorithm is based on trivial commuting rules; the same is true
for the last step as no entanglement command can act on a qubit that has been measured. Both
steps can be done in O(N2). The real complexity of the algorithm comes from the second step
and the EX commuting rule. In the worst case scenario, commuting an X correction to the left
might create O(N2) other Z corrections, each of which has to be commuted to the left themselves.
Thus one can have at most O(N3) new corrections, each of which has to be commuted past O(N2)
measurement or entanglement commands. Therefore the second step, and hence the algorithm, has
a worst case complexity of O(N5).

We conclude this subsection by emphasizing the importance of the EMC form. Since the
entanglement can always be done first, we can always derive the entanglement resource needed for
the whole computation right at the beginning. After that only local operations will be performed.
This will separate the analysis of entanglement resource requirements from the classical control.
Furthermore, this makes it possible to extract the maximal parallelism for the execution of the
pattern since the necessary dependecies are explicitly expressed, see the example in section 6 for
further discussion. Finally, the EMC form provides us with tools to prove general theorems about
patterns, such as the fact that they always compute cptp-maps and the expressiveness theorems of
section 7.

5.4 Signal shifting

One can extend the calculus to include the signal shifting command St
i . This allows one to dispose

of dependencies induced by the Z-action, and obtain sometimes standard patterns with smaller
computational depth complexity, as we will see in the next section which is devoted to examples.

t[Mα
i ]s ⇒ St

i [M
α
i ]s

Xs
j St

i ⇒ St
iX

s[t+si/si]
j

Zs
j St

i ⇒ St
iZ

s[t+si/si]
j

t[Mα
j ]sSr

i ⇒ Sr
i

t[r+si/si][Mα
j ]s[r+si/si]

Ss
i S

t
j ⇒ St

jS
s[t+sj/sj ]
i

where s[t/si] denotes the substitution of si with t in s, s, t being signals. Note that when we write
a t explicitly on the upper left of an M , we mean that t "= 0. The first additional rewrite rule was
already introduced as equation (6), while the other ones merely propagate the signal shift. Clearly
one can dispose of St

i when it hits the end of the pattern command sequence. We will refer to this
new set of rules as ⇒S. Note that we always apply first the standardization rules and then signal
shifting, hence we do not need any commutation rule for E and S commands.

It is important to note that both theorem 2 and 3 still hold for this extended rewriting system.
In order to prove termination one can start with the EMC form and then adapt the proof of
Theorem 2 by defining a depth function for a signal shift similar to the depth of a correction
command. As with the correction, signal shifts can also be commuted to the left hand side of a
command sequence. Now our measure can be modified to account for the new signal shifting terms
and shown to be decreasing under each step of signal shifting. Confluence can be also proved from
local confluence using again Newman’s Lemma [Bar84]. One typical critical pair is t[Mα

j ]Ss
i where

i appears in the domain of signal t and hence the signal shifting command Ss
i will have an effect on

the measurement. Now there are two possible ways to rewrite this pair, first, commute the signal
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Reducing Depth

Depth of a pattern is the length of the longest feed-forward chain

Standardisation and Signal Shifting reduce depth. 
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Depth Complexity

All the models for QC are equivalent in computational power.

Theorem. There exists a logarithmic separation in depth complexity 
between MBQC and circuit model. 

A. Broadbent and E. Kashefi, TCS 07

Figure 11: A classically controlled implementation of a controlled-unitary gate.
The computational basis measurement operator is represented by the half-circle
box with Z label. After measurement is pushed to the beginning of the wire the
unitary U will be only classically dependent (doted line) on the first wire.

7.2 From patterns to circuits

The construction of Definition 7.2 can be also used in reverse order to trans-
fer a pattern to a corresponding circuit, where all the auxiliary qubits will be
removed and hence by doing so the quantum depth might increase. However,
it is possible to obtain another transformation from patterns to circuits where
one keeps all the auxiliary qubits. This new construction is simply based on the
well-known method of coherently implementing the measurements. Recall that
a controlled-unitary operator where the control qubit is measured in the compu-
tational basis (|0〉, |1〉) can be written as a classical controlled unitary by pushing
the measurement before the controlled-unitary operator [2], see Figure 11.

Given a pattern in the standard form, we use the above scheme in the reverse
order to convert the classically dependent measurements and corrections, and
then push all the independent measurements to the end of the pattern. However
since the scheme works only for the computational basis measurement we have
to first simplify all the arbitrary measurements Mα. Let P (α) be the phase
gate and H the Hadamard gate (as defined in the Appendix), and let MZ be
the computational basis measurement. Then we have

Mα = M (|+α〉,|−α〉) = M{HP (−α)}
†
(|0〉,|1〉) = MZHP (−α) . (16)

It is important to note that replacing a classical dependency with a sequence
of ∧X and ∧Z will create a quantum depth linear in the number of the de-
pendencies, as shown in Figure 12. However we can use the following result on
parallelizing a circuit with only controlled-Pauli to logarithmic depth:

Proposition 7.6. [4] Circuits of n qubits consisting of controlled-Pauli gates
and the Hadamard gate can be parallelized to a circuit with O(log n) depth with
O(n2) auxiliary qubits.

Definition 7.7. Let P be a standard pattern with computational space (V, I, O),
underlying geometry (G, I, O) and command sequence (after signal shifting):

· · ·CCj

j · · · [Mαi

i ]Ai · · ·EG
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QC in a nutshell
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Parity function: MQC needs 1 quantum layer and                  classical layers whereas in the 
circuit model the quantum depth is  



Depth Complexity

Theorem. MBQC has the same parallel computational power 
as quantum circuits with unbounded fan-out.

D. Browne, E. Kashefi, S. Perdrix TQC 07



Figure 9: A quantum circuit with ∧Z and J gates, together with the two-step
construction of the corresponding labelled entanglement graph. In the final
step, we followed our common notation of representing an input qubit by a
boxed vertex and an output qubit with a white vertex. The black vertices will
be measured with angles α, β and γ, as shown in the figure.
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Automated Parallelising Scheme

Theorem. Forward and backward translation between 
circuit model and MQC can only decrease the depth.

Figure 9: A quantum circuit with ∧Z and J gates, together with the two-step
construction of the corresponding labelled entanglement graph. In the final
step, we followed our common notation of representing an input qubit by a
boxed vertex and an output qubit with a white vertex. The black vertices will
be measured with angles α, β and γ, as shown in the figure.
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Characterisation 

Figure 13: An even number of Pauli measurements between two non-Pauli mea-
surement lead to an indirect X-dependency after signal shifting.

to have a sequence of Z dependencies between Ni and β, P ∗
1 should satisfy

the conditions of cases (I) or (II) and then similar to the above argument in
order to obtain an X-dependency between Ni and Nj, P ∗

2 should also satisfy
the conditions of cases (I) or (II) and hence we obtain the statement of the
lemma.

Proposition 8.3. Let P be a pattern with flow function f , where standardiza-
tion and signal shifting have been performed. The computation depth is equal
to 3 if and only if for any two consecutive non-Pauli measurement Ni or Nj

either condition of Lemma 8.2 is satisfied or qubit i is either an input qubit or
the flow image of a degree one qubit measured with the Pauli Y .

Proof. A pattern has computation depth 3 if and only if there exists only
two layers of measurements. Now consider two consecutive non-Pauli measure-
ment Ni or Nj which do not satisfy the condition of Lemma 8.2, hence after
signal shifting there will be an X-dependency between them. Now qubit i should
belong to the first layer of measurement and therefore from Proposition 8.1 it
must be either an input qubit or flow image of a degree one qubit measured
with the Pauli Y .

The recursive structure of the above proof can be easily extended to any other
depth, for simplicity we present this recursive structure with a new compact
rewriting system.

Theorem 8.4. A pattern P has depth d +2 (d +1) if and only if on any influ-
encing path we obtain P ∗N i≤dP ∗ ({Y, ∅}N i≤dP ∗), after applying the following
rewriting rule:

N P ∗
1 α1β1 P ∗

2 α2β2 · · · P ∗
k N

{

NN if ∀P ∗
i #= X(XY )∗

N otherwise

Proof. The proof is obtained from Lemma 8.2 and Proposition 8.1.

The above theorem gives a constructive method to obtain a depth d pattern.
The main tool being the sequence X(XY )∗, which if it is inserted between two
non-Pauli measurements make them independent of each other. Whereas any
other sequence for insertion between non-Pauli angles contribute to depth and
make the two non-Pauli measurement X-dependent on each other and hence in
two different layer of measurements.
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Theorem. A pattern has depth               if and only if on any influencing path we 
obtain                      after applying the following rewriting rule:



The Magical Clifford Sequence

depth with a quantum computer, one can ask similarly whether P is included in QNC. Finally,
Richard Jozsa conjectured that:

Jozsa Conjecture.[8] Any polynomial-time quantum algorithm can be implemented with only
O(log(n)) quantum layers interspersed with polynomial-time classical computations.

Previous results on parallel quantum circuits include the parallelization of circuits for the semi-
classical quantum Fourier transform [9], approximate quantum Fourier transform [10], as well as for
encoding and decoding quantum error-correcting codes [11]. These constructions usually require the
use of auxiliary qubits. The depth complexity of quantum circuits has also been studied in [12, 13].
Several other approaches based on local optimization and circuit rewriting rules were introduced
in [14, 15].

Our main result on parallelizing quantum circuits is summarized below. The notion of circuit
influencing path is the key concept in our automated parallelization techniques: A left-to-right path
starting at the beginning of a circuit wire ending at the same or another wire, such that the jumps
between wires are done through controlled-Z gates with no two consecutive jumps.

Theorem. Let C be a circuit of controlled-Z, J , H and H i gates 1 on n qubits with size s and
depth D. Assume that after the following simplification rule on J gates over all circuit influencing
paths, we obtain at most D′ many consecutive J gates:

J P1 α1β1 P2 α2β2 · · · Pk J ⇒

{

J if ∃Pi = (H)odd(H i(H)odd)∗

JJ otherwise .

where Pi represents a finite sequence of H and H i gates and αiβi represents the J gates immedi-
ately after a controlled-Z gate on the underlying circuit influencing path. Then circuit C can be
parallelized to an equivalent circuit C ′ with depth in O(D′ log(s)) and size in O(s3 + n).

In simple words the theorem states that the longest sequence of consecutive J gates over an
influencing path is an upper bound of the circuit depth. However the “magical” sequence of
(H)odd(H i(H)odd)∗ separating two J gates will make them to appear in the same layer after par-
allelization is performed. Furthermore, this sequence is a constructive building block for designing
parallel circuit as we discussed later. It is important to emphasize that the given rules in the above
theorem are not circuit identities and hence our parallelization method is fundamentally different
from the local circuit rewriting approaches. We use the influencing path as an structural tool for
analyzing circuit depth and then using an automated method (described below) we reconstruct
another circuit having the computed improved depth.

Our main theorem, the concept of the influencing path and the automated parallelization tech-
nique, are all obtained using the recently proposed formalism of the measurement-based model for
quantum computation (MBQC) [8, 16, 17, 18], an approach to quantum computing that uses mea-
surement as its main ingredient. A computation in MBQC is usually referred to as a pattern and
consists of a round of global operations (two-qubit gates) to create the required initial multi-qubit
entanglement, followed by a sequence of classically controlled local operators (single qubit measure-
ments and unitaries). A more formal definition is given later. We will work in particular within

1This set of gates are universal and defined as follows:

J = HP Hi = 1√
2

„

1 −i

1 i

«

.

2
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


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



Figure 12: A circuit with one of its influencing path presented as a doted line. The J gates in the
shaded area are those referred to as the J gates of the path.

first layer of Pauli and one final layer of corrections the depth along this path will be i+2. However
if the final form is Y N i P then there will be no dependency between the Pauli Y and the first
non-Pauli N (Equation (11)) and depth is i + 1 which is also the case for the final form N i P.

According to Proposition 6.2 the pattern depth is the maximum number of the dependent non-
Pauli measurements along all the influencing paths and hence it is enough to compute the maximum
value of i over all influencing paths.

The above theorem gives a constructive method to obtain a depth d pattern. The main tool
being the sequence (X)odd(Y (X)odd)∗, which if it is inserted between two non-Pauli measurements
make them independent of each other. On the other hand, any other sequence inserted between
non-Pauli angles contributes to the depth and makes the two non-Pauli measurements X-dependent
on each other and hence in two different layers of measurement.

We now show as a special case the characterization of patterns with depth 2.

Proposition 8.4. Let P be a pattern with flow f , where standardization, Pauli simplification and
signal shifting have been performed. The quantum computation depth is equal to 2 if and only if
any qubit measured with a non-Pauli angle is not the flow image of any other vertex and hence it
is either an input qubit or is connected to a vertex with a loop flow edge.

Proof. Due to Theorem 8.3, P has depth 2 if and only if on all the influencing paths, after the
simplification rule, we obtain one of the following final forms for the sequence of the measurement
angles:

N P or Y N P or P .

Now consider only those influencing paths with only flow edges, by reverse application of the
simplification rules we conclude only input qubits can be measured with a non-Pauli angle or a
non-input qubit measured by a non-Pauli measurement should not be the flow image of any other
qubit and be connected to a qubit measured with Pauli Y .

Note that this proposition extends the previously know results that patterns with only Pauli
measurements have depth 2 [8, 35].
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By applying our theorem ??, we see that we can perform the parity com-
putation in the MQC with constant quantum depth and classical logarithmic
depth (PUT MORE DETAIL HERE) (actually, Parity is in Clifford, and we
already knew that Clifford was in depth 1 [8]).

9.2 A circuit example

|ψ1〉 α11 • H α12 • H · · · α1n • H

|ψ2〉 • α21 • H • α22 • H · · · • α22 • H

|ψ3〉 • α31 • α32 · · · • α32
...

. . .
. . .

. . .
|ψn−1〉 • H • H · · · • H

|ψn〉 • αn1 • αn2 · · · • αnn

Figure 16: A quantum circuit that can be implemented in the MQC with quan-
tum depth 2 and classical depth n.

Question: any known results on circuits that can be applied to above exam-
ple?

9.3 Quantum Fourier transform

It would be so cool if we could show that our algorithm gives the same parallel
circuit for the approximate Fourier transform. Or maybe we can improve the
results and give parallel circuit for the exact Fourier transform? ([2])

Semi-classical Fourier transform?

10 Conclusions
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Example

Can be parallelised to a pattern with depth 2



Determinism

A pattern is deterministic if all the branches are the same.

A necessary and sufficient condition for determinism 
based on geometry of entanglement

How to obtain global determinism via local controls



Flow

Definition. An entanglement graph                has flow if there exists a map  
                    and  a partial order       over qubits

QC in a nutshell

A flow (f,�) for a geometry (G, I, O) consists of a map f : Oc ⇤ Ic

and a partial order � over V such that for all x ⌅ Oc:

— (i) x ⇥ f(x)
— (ii) x � f(x)
— (iii) for all y ⇥ f(x) , we have x � y
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Constructive Determinism

Theorem. A pattern is uniformly and step-wise deterministic iff its graph has a flow.

Determinism Theorem

Theorem

Assume G (V , I ,O) has flow then the following pattern is uniformly
deterministic:

�
i�Oc (X

si
f (i)

�
k�NG (f (i))r{i} Z si

k M�i
i )EG

and computes
�

i�Oc �+�|i EG

3

2

2

1

4

3

3

s1

s1

Z

Z

Z

s1

s1

X

Elham Kashefi Information Flow and Applications

Determinism Theorem

• [Theorem]. If G(V, I, O) has flow, then the following pattern is
deterministic:

�
i⇥Oc(Xsi

f(i)
�

k⇥NG(f(i))�{i} Zsi
k M�i

i )EG

and computes
�

i⇥Oc ⇧+�|i EG



Pattern Design

⇥⇥ Entanglement graph, G(V, I, O)

⇥⇥ Angles of measurements, {�i}
⇥⇥ Dependency structure

Example: controlled-U(�, ⇥, ⌅, ⇤)

Zsi+sg+se+sc+sa

k Xsj+sh+sf+sd+sb

k XsB

C ZsA+se+sc

C

M0
BM��⇤

A M0
j [M⇥�⇧

i ]sh+sf+sd+sb[M
� ⇤

2

h ]sg+se+sc+sa[M
⇧

2
g ]sf+sd+sb

M0
f [M

�⇧

2
e ]sd+sb[M

⇤

2

d ]
sc+sa[M

⇧�⌅�⇥

2
c ]sbM0

b M
�⇥+⌅+⇧

2
a

EBCEABEjkEijEhiEghEfgEAfEefEdeEcdEbcEabEAb

a k

CA

Entanglement Graph

Pattern Design

Given a Unitary map we have to find

Pattern Design

⇥⇥ Entanglement graph, G(V, I, O)

⇥⇥ Angles of measurements, {�i}
⇥⇥ Dependency structure

Example: controlled-U(�, ⇥, ⌅, ⇤)

Zsi+sg+se+sc+sa

k Xsj+sh+sf+sd+sb

k XsB

C ZsA+se+sc

C

M0
BM��⇤

A M0
j [M⇥�⇧

i ]sh+sf+sd+sb[M
� ⇤

2

h ]sg+se+sc+sa[M
⇧

2
g ]sf+sd+sb

M0
f [M

�⇧

2
e ]sd+sb[M

⇤

2

d ]
sc+sa[M

⇧�⌅�⇥

2
c ]sbM0

b M
�⇥+⌅+⇧

2
a

EBCEABEjkEijEhiEghEfgEAfEefEdeEcdEbcEabEAb

a k

CA

Entanglement Graph

Standard controlled-U
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Indirect Way

• Start with a circuit implementing U

• Translates each gate with the corresponding pattern

• Use measurements calculus algorithm to obtain the standard form



Pattern Design (direct way)

• First step: given U find G and {�i}
(Phase Map Decomposition)

⇥ • Second step: from G obtain the dependency structure
(Flow Condition)

• If failed then back track
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Pattern Design (direct way)

• First step: given U find G and {�i}
(Phase Map Decomposition)

⇥ • Second step: from G obtain the dependency structure
(Flow Condition)

• If failed then back track

• From the geometry of G obtain the feed-forward structure 

• If failed then back track



Phase Map Decomposition

Theorem. Every Unitary on n qubits can be decomposed as:

Phase Map Decomposition

• [Theorem.] Every unitary over Hn can be decomposed as:

U = RO ⇤DV ⇤ PIc

• Preparation map, PIc : HI ⇧ HV where |x� ⌃⇧ |x� ⇥ | + · · ·+�Ic

• Restriction map, RO : HV ⇧ HO where |x� ⌃⇧ |x�|O
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Example 1 (J�)

J� = 2�1/2

�
1 ei�

1 �ei�

⇥
=

�
1 0 1 0
0 1 0 1

⇥
·

⇤

⌥⇧

1 0 0 0
0 1 0 0
0 0 ei� 0
0 0 0 �ei�

⌅

�⌃ · 2�1/2

⇤

⌥⇧

1 0
1 0
0 1
0 1

⌅

�⌃

Hence:

J� = R12⌅2D12⌅12P1⌅12

• Remark: this decomposition is not physical

• The above phase map is Z�
1 ⇧Z12 therefore:

J� = R1(Z�
1 ⇧Z12)P2

= ⌃+�|1⇧Z12)P2

which leads to the following pattern for J�:

Xs1

2 M�
1 E12N2

Example
A universal set for unitaries on C2

J(�) := 1⇥
2

�
1 ei�

1 �ei�

⇥

Some nice equations:

J(�)J(0)J(⇥) = J(� + ⇥)
J(�)J(⇤)J(⇥) = ei�Z J(⇥ � �)
XJ(�) = J(� + ⇤) = J(�)Z
H = J(0)
P (�) = J(0)J(�)
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An algorithm to generate all such decompositions

• Input: for sets V , I, and O and n = |Ic| :

⇤⇤ a unitary U on HI;
⇤⇤ complex numbers { x(i)

pq }2n�|I|

i=1 satisfying Equations:

u =
�

i⌃2n�|I| x(i)

2n/2|x(i)| = 1

⇤⇤ a permutation � over {1, · · · ,2n�|I|}.

• Output: diagonal elements {dkk}2|V |

k=1 , such that dkk =
�

2n x(i)
pq , where:

⇤⇤ the binary representation of p agrees with that of k after restriction to O;
⇤⇤ q ⇧ k mod 2|I|;
⇤⇤ i = �(�k/2|I| ).

An algorithm to generate all such decompositions



An algorithm to obtain G and �i

• Input: A phase map decomposition for U

• Output: either (i) A graph G on V and {�j}j⇧Oc,
or (ii) no matching graph exists.

1. For j ⇧ {1, · · · , |Oc|}, consider the |V |-bit string zj that only has a 1 at
position j, and set � such that e�i�j = dzjzj .

2. For all j, k, consider the |V |-bit string zjk having a 1 only at positions j and
k. Check whether dzjkzjk = ±e�i(�j+�k) (the angles for the corresponding qubit
in O is taken to be 0).
— (i) if YES and the sign is �1, return Ejk as an edge in G.
— (ii) if NO, no matching graph exists.

An algorithm to obtain the graph and the angles



Example 1 (J�)

J� = 2�1/2

�
1 ei�

1 �ei�

⇥
=

�
1 0 1 0
0 1 0 1

⇥
·

⇤

⌥⇧

1 0 0 0
0 1 0 0
0 0 ei� 0
0 0 0 �ei�

⌅

�⌃ · 2�1/2

⇤

⌥⇧

1 0
1 0
0 1
0 1

⌅

�⌃

Hence:

J� = R12⌅2D12⌅12P1⌅12

• Remark: this decomposition is not physical

• The above phase map is Z�
1 ⇧Z12 therefore:
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which leads to the following pattern for J�:

Xs1

2 M�
1 E12N2

So we get:

A pattern with projections

We need to replace projections with measurements and still obtain determinism 
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Anachronical Correction 



From Noise to Determinism

A pattern is deterministic if all the branches are the same.

A necessary condition for determinism 
based on geometry of entanglement is given by flow



Flow

Definition. An entanglement graph                has flow if there exists a map  
                    and  a partial order       over qubits

QC in a nutshell

A flow (f,�) for a geometry (G, I, O) consists of a map f : Oc ⇤ Ic

and a partial order � over V such that for all x ⌅ Oc:

— (i) x ⇥ f(x)
— (ii) x � f(x)
— (iii) for all y ⇥ f(x) , we have x � y
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A flow (f,�) for a geometry (G, I, O) consists of a map f : Oc ⇤ Ic
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Correcting Measurement



Flow

Theorem. A pattern with flow is uniformly and strongly deterministic. 

Patterns with flow                             Unitary embedding 



Summary

Static structure/Entanglement 

Quantum Computation

Understand      Analyse      Control 

Parallelism, Determinism, Decomposition



Future Directions - Specific tools for MBQC

Algorithmic Design
 Direct synthesis of unitaries as patterns

Complexity Analysis 
 Parallelisation scheme and characterisation of low depth patterns

Security Protocols
 Commitment and hiding by exploring the geometry of interaction

Model Checking and Formal Verification
 To detect security leaks in protocols
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Cloud Computing

Secure Quantum/Classical 
Communication/Computation 
across untrusted networks



Homomorphic Encryption

Rivest 78: Processing encrypted data without decrypting it first 

• Voting system
• Collision-resistance hash function
• Private information retrieval

Gentry 09: A Lattice-based cryptosystem that is fully 
homomorphic but inefficient and only computationally secure 

➡ There are several efficient, partially homomorphic crypto-
systems  

         (RSA: for multiplication) 

Broadbent Fitzsimons Kashefi 09: A quantum based fully 
homomorphic unconditionally secure cryptosystem with verification



Related Works

•  Arrighi and Salvail- Blind QC for a restricted set of classical functions

➡ Alice needs quantum memory, state preparation and measurement
➡ The classical function is public
➡ Polynomial security against individual attacks 

• Andrew Childs - Secure assisted QC 

➡ Alice needs quantum memory, state preparation and Pauli gates
➡ The unitary function is public
➡ In general dishonest Bob cannot be detected

• Aharonov, Ben-Or and Eban - Interactive Prove for QC

➡ Alice has a constant-size quantum computer 



Blind Computation
with BPP* Alice

Big Picture

NP
BPP

How do we verify the 
Solution ?

Can we verify it with a 
classical Computer ?

Not all the problem in NP 
can be computed blindly 

with a BPP Alice

BQP

YES

nStill requires 2   parameters 
for a classical computer 

to simulate it 

• Abadi, Feigenbaum and Kilian



Universal Blind QC Protocol

Classical Computer
random single qubit  generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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 - Detection of malicious Bob

- Fault Tolerance 

-Perfect Privacy
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Measurement-based classical computation

Janet Anders∗1 and Dan E. Browne†1

1Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

(Dated: May 8, 2008)

We study the intrinsic computational power of entangled states exploited in measurement-based
quantum computation. By focussing on the power of the classical computer that controls the mea-
surements, we develop a classification of computational resource power, leading naturally to a notion
of resource states for measurement-based classical computation. Surprisingly, the Greenberger-
Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
computational power of entangled resource states.

PACS numbers: 03.67.Lx, 03.65.Ud

Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational

∗janet@qipc.org
†d.browne@ucl.ac.uk

resource state

control computer

measurement

sites

FIG. 1: The control computer provides one bit of classical
information (downward arrows) to each site (circles in the re-
source state) determining the choice of measurement basis.
After the measurement, one bit of classical information (up-
ward arrow), such as the outcome of the binary measurement,
is sent back to the control computer.

power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-

control computer

resource state

measurement site

Program is encoded in the classical control computer 
Computation Power is encoded in the entanglement

Measurement-based Quantum Computing 
[Raussendorf, Briegel, 2001]

Measurement Calculus
[Danos, Kashefi, Panangaden 2007]



The First MBQC Protocol
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(see Fig. 1) by keeping track of the outcomes of previous
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tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
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• Entanglement Resource
• Angles Of measurements
• Results of Measurements
• Dependencies
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•  One-qubit Teleportation
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Figure 2: Pattern with arbitrary rotations. Squares indicate output qubits.
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Figure 4: Implementation of a π/8 gate.

determinism, and allows measurements to be performed layer-by-layer. The action of the measure-
ment of the first three qubits on each wire is clearly given by the rotations in the right-hand part of
Figure 2 [BB06]. The circuit identity follows since ctrl-Z commutes with Z(α) and is self-inverse.

By assigning specific values to the angles, we get the Hadamard gate (Figure 3), the π/8 gate
(Figure 4) and the identity (Figure 5). By symmetry, we can get H or π/8 acting on logical qubit 2
instead of logical qubit 1.

In Figure 6, we give a pattern and show using circuit identities that it implements a ctrl-X.
The verification of the circuit identities is straightforward. Again by symmetry, we can reverse the
control and target qubits. Note that as long as we have ctrl-Xs between any pair of neighbours,
this is sufficient to implement ctrl-X between further away qubits.

We now show how we can tile the patterns as given in Figures 2 through 6 (the underlying graph
states are the same) to implement any circuit using U as a universal set of gates. In Figure 7, we
show how a 4-qubit circuit with three gates, U1, U2 and U3 (each gate acting on a maximum of two
adjacent qubits) can be implemented on the brickwork state G9,4. We have completed the top and
bottom logical wires with a pattern that implements the identity. Generalizing this technique, we
get the family of brickwork states as given in Figure 1 and Definition 1.

C Quantum Inputs and Outputs
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Main Protocol

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
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computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.
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Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.
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2. Given the distribution of classical information described in 1, the state of the quantum system
obtained by Bob in P is fixed and independent of X.

Definition 2 captures the intuitive notion that Bob’s view of the protocol should not depend on X
(when given Y ); since his view consists of classical and quantum information, this means that the
distribution of the classical information should not depend on X (given Y ) and that for any fixed
choice of the classical information, the state of the quantum system should be uniquely determined
and not depend on X (given Y ). We are now ready to state and prove our main theorem. Recall
that in Protocol 1, (n,m) is the dimension of the brickwork state.

Theorem 3 (Blindness). Protocol 1 is blind while leaking at most (n,m).

Proof. Let (n,m) (the dimension of the brickwork state) be given. Note that the universality of
the brickwork state guarantees that Bob’s creating of the graph state does not reveal anything on
the underlying computation (except n and m).

Alice’s input consists of φ = (φx,y | x ∈ [n], y ∈ [m]), with the actual measurement angles φ′ =
(φ′

x,y | x ∈ [n], y ∈ [m]) being a modification of φ that depends on previous measurement outcomes.
Let the classical information that Bob gets during the protocol be δ = (δx,y | x ∈ [n], y ∈ [m]), and
let A be the quantum system initially sent from Alice to Bob.

To show independence of Bob’s classical information, let θ′x,y = θx,y + πrx,y (for a uniformly
random chosen θx,y) and θ′ = (θ′x,y | x ∈ [n], y ∈ [m]). We have δ = φ′ + θ′, with θ′ being uniformly
random (and independent of φ and/or φ′), which implies the independence of δ and φ.

As for Bob’s quantum information, first fix an arbitrary choice of δ. Because rx,y is uniformly
random, for each qubit of A, one of the following two has occurred:

1. rx,y = 0 so δx,y = φ′
x,y + θ′x,y and |ψx,y〉 = 1√

2
(|0〉 + ei(δx,y−φ′

x,y) |1〉.
2. rx,y = 1 so δx,y = φ′

x,y + θ′x,y + π and |ψx,y〉 = 1√
2
(|0〉 − ei(δx,y−φ′

x,y) |1〉.

Since δ is fixed, θ′ depends on φ′ (and thus on φ), but since rx,y is independent of everything else,
without knowledge of rx,y (i.e. taking the partial trace of the system over Alice’s secret), A consists
of copies of the two-dimensional completely mixed state, which is fixed and independent of φ.

There are two malicious scenarios that are covered by Definition 2 and that we explicitly mention
here. Suppose Bob has some prior knowledge, given as some a priori distribution on Alice’s input X.
Since Definition 2 applies to any distribution of X, we can simply apply it to the conditional
distribution representing the distribution of X given Bob’s a priori knowledge; we conclude that
Bob does not learn any information on X beyond what he already knows, as well as what is leaked.
The second scenario concerns a Bob whose goal it is to find Alice’s output. Definition 2 forbids
this: learning information on the output would imply learning information on Alice’s input.

Note that the protocol does not allow Alice to reveal to Bob whether or not she accepts the result
of the computation as this bit of information could be exploited by Bob to learn some information
about the actual computation. In this scenario, Protocol 2 can be used instead.

3 Quantum Inputs and Outputs

We can slightly modify Protocol 1 to deal with both quantum inputs and outputs. In the former
case, no extra channel resources are required, while the latter case requires a quantum channel
from Bob to Alice in order for him to return the output qubits. Alice will also need to be able to
apply X and Z Pauli operators in order to undo the quantum one-time pad. The exact protocols
are given as Protocols 4 and 5 in Appendix C; a brief description of the protocols follows. Note
that these protocols can be combined to obtain a protocol for quantum inputs and outputs.

3.1 Quantum Inputs

Consider the scenario where Alice’s input is the form of m physical qubits and she has no efficient
classical description of the inputs to be able to incorporate it into Protocol 1. In this case, she
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random, for each qubit of A, one of the following two has occurred:

1. rx,y = 0 so δx,y = φ′
x,y + θ′x,y and |ψx,y〉 = 1√

2
(|0〉 + ei(δx,y−φ′

x,y) |1〉.
2. rx,y = 1 so δx,y = φ′

x,y + θ′x,y + π and |ψx,y〉 = 1√
2
(|0〉 − ei(δx,y−φ′

x,y) |1〉.

Since δ is fixed, θ′ depends on φ′ (and thus on φ), but since rx,y is independent of everything else,
without knowledge of rx,y (i.e. taking the partial trace of the system over Alice’s secret), A consists
of copies of the two-dimensional completely mixed state, which is fixed and independent of φ.

There are two malicious scenarios that are covered by Definition 2 and that we explicitly mention
here. Suppose Bob has some prior knowledge, given as some a priori distribution on Alice’s input X.
Since Definition 2 applies to any distribution of X, we can simply apply it to the conditional
distribution representing the distribution of X given Bob’s a priori knowledge; we conclude that
Bob does not learn any information on X beyond what he already knows, as well as what is leaked.
The second scenario concerns a Bob whose goal it is to find Alice’s output. Definition 2 forbids
this: learning information on the output would imply learning information on Alice’s input.

Note that the protocol does not allow Alice to reveal to Bob whether or not she accepts the result
of the computation as this bit of information could be exploited by Bob to learn some information
about the actual computation. In this scenario, Protocol 2 can be used instead.

3 Quantum Inputs and Outputs

We can slightly modify Protocol 1 to deal with both quantum inputs and outputs. In the former
case, no extra channel resources are required, while the latter case requires a quantum channel
from Bob to Alice in order for him to return the output qubits. Alice will also need to be able to
apply X and Z Pauli operators in order to undo the quantum one-time pad. The exact protocols
are given as Protocols 4 and 5 in Appendix C; a brief description of the protocols follows. Note
that these protocols can be combined to obtain a protocol for quantum inputs and outputs.

3.1 Quantum Inputs

Consider the scenario where Alice’s input is the form of m physical qubits and she has no efficient
classical description of the inputs to be able to incorporate it into Protocol 1. In this case, she

6
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Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
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➡ Independence of Bob’s quantum information for a fixed  

2. Given the distribution of classical information described in 1, the state of the quantum system
obtained by Bob in P is fixed and independent of X.

Definition 2 captures the intuitive notion that Bob’s view of the protocol should not depend on X
(when given Y ); since his view consists of classical and quantum information, this means that the
distribution of the classical information should not depend on X (given Y ) and that for any fixed
choice of the classical information, the state of the quantum system should be uniquely determined
and not depend on X (given Y ). We are now ready to state and prove our main theorem. Recall
that in Protocol 1, (n,m) is the dimension of the brickwork state.

Theorem 3 (Blindness). Protocol 1 is blind while leaking at most (n,m).

Proof. Let (n,m) (the dimension of the brickwork state) be given. Note that the universality of
the brickwork state guarantees that Bob’s creating of the graph state does not reveal anything on
the underlying computation (except n and m).

Alice’s input consists of φ = (φx,y | x ∈ [n], y ∈ [m]), with the actual measurement angles φ′ =
(φ′

x,y | x ∈ [n], y ∈ [m]) being a modification of φ that depends on previous measurement outcomes.
Let the classical information that Bob gets during the protocol be δ = (δx,y | x ∈ [n], y ∈ [m]), and
let A be the quantum system initially sent from Alice to Bob.

To show independence of Bob’s classical information, let θ′x,y = θx,y + πrx,y (for a uniformly
random chosen θx,y) and θ′ = (θ′x,y | x ∈ [n], y ∈ [m]). We have δ = φ′ + θ′, with θ′ being uniformly
random (and independent of φ and/or φ′), which implies the independence of δ and φ.

As for Bob’s quantum information, first fix an arbitrary choice of δ. Because rx,y is uniformly
random, for each qubit of A, one of the following two has occurred:

1. rx,y = 0 so δx,y = φ′
x,y + θ′x,y and |ψx,y〉 = 1√

2
(|0〉 + ei(δx,y−φ′

x,y) |1〉.
2. rx,y = 1 so δx,y = φ′

x,y + θ′x,y + π and |ψx,y〉 = 1√
2
(|0〉 − ei(δx,y−φ′

x,y) |1〉.

Since δ is fixed, θ′ depends on φ′ (and thus on φ), but since rx,y is independent of everything else,
without knowledge of rx,y (i.e. taking the partial trace of the system over Alice’s secret), A consists
of copies of the two-dimensional completely mixed state, which is fixed and independent of φ.

There are two malicious scenarios that are covered by Definition 2 and that we explicitly mention
here. Suppose Bob has some prior knowledge, given as some a priori distribution on Alice’s input X.
Since Definition 2 applies to any distribution of X, we can simply apply it to the conditional
distribution representing the distribution of X given Bob’s a priori knowledge; we conclude that
Bob does not learn any information on X beyond what he already knows, as well as what is leaked.
The second scenario concerns a Bob whose goal it is to find Alice’s output. Definition 2 forbids
this: learning information on the output would imply learning information on Alice’s input.

Note that the protocol does not allow Alice to reveal to Bob whether or not she accepts the result
of the computation as this bit of information could be exploited by Bob to learn some information
about the actual computation. In this scenario, Protocol 2 can be used instead.

3 Quantum Inputs and Outputs

We can slightly modify Protocol 1 to deal with both quantum inputs and outputs. In the former
case, no extra channel resources are required, while the latter case requires a quantum channel
from Bob to Alice in order for him to return the output qubits. Alice will also need to be able to
apply X and Z Pauli operators in order to undo the quantum one-time pad. The exact protocols
are given as Protocols 4 and 5 in Appendix C; a brief description of the protocols follows. Note
that these protocols can be combined to obtain a protocol for quantum inputs and outputs.

3.1 Quantum Inputs

Consider the scenario where Alice’s input is the form of m physical qubits and she has no efficient
classical description of the inputs to be able to incorporate it into Protocol 1. In this case, she
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random chosen θx,y) and θ′ = (θ′x,y | x ∈ [n], y ∈ [m]). We have δ = φ′ + θ′, with θ′ being uniformly
random (and independent of φ and/or φ′), which implies the independence of δ and φ.

As for Bob’s quantum information, first fix an arbitrary choice of δ. Because rx,y is uniformly
random, for each qubit of A, one of the following two has occurred:

1. rx,y = 0 so δx,y = φ′
x,y + θ′x,y and |ψx,y〉 = 1√

2
(|0〉 + ei(δx,y−φ′

x,y) |1〉).
2. rx,y = 1 so δx,y = φ′

x,y + θ′x,y + π and |ψx,y〉 = 1√
2
(|0〉 − ei(δx,y−φ′

x,y) |1〉).

Since δ is fixed, θ′ depends on φ′ (and thus on φ), but since rx,y is independent of everything else,
without knowledge of rx,y (i.e. taking the partial trace of the system over Alice’s secret), A consists
of copies of the two-dimensional completely mixed state, which is fixed and independent of φ.

There are two malicious scenarios that are covered by Definition 2 and that we explicitly mention
here. Suppose Bob has some prior knowledge, given as some a priori distribution on Alice’s input X.
Since Definition 2 applies to any distribution of X, we can simply apply it to the conditional
distribution representing the distribution of X given Bob’s a priori knowledge; we conclude that
Bob does not learn any information on X beyond what he already knows, as well as what is leaked.
The second scenario concerns a Bob whose goal it is to find Alice’s output. Definition 2 forbids
this: learning information on the output would imply learning information on Alice’s input.

Note that the protocol does not allow Alice to reveal to Bob whether or not she accepts the result
of the computation as this bit of information could be exploited by Bob to learn some information
about the actual computation. In this scenario, Protocol ?? can be used instead.

3 Quantum Inputs and Outputs

We can slightly modify Protocol 1 to deal with both quantum inputs and outputs. In the former
case, no extra channel resources are required, while the latter case requires a quantum channel from
Bob to Alice in order for him to return the output qubits. Alice will also need to be able to apply
X and Z Pauli operators in order to undo the quantum one-time pad. The exact protocols are
given as Protocols ?? and ?? in Appendix ??; a brief description of the protocols follows. Note
that these protocols can be combined to obtain a protocol for quantum inputs and outputs.

3.1 Quantum Inputs

Consider the scenario where Alice’s input is the form of m physical qubits and she has no efficient
classical description of the inputs to be able to incorporate it into Protocol 1. In this case, she
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Measurement-based classical computation

Janet Anders∗1 and Dan E. Browne†1

1Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

(Dated: May 8, 2008)

We study the intrinsic computational power of entangled states exploited in measurement-based
quantum computation. By focussing on the power of the classical computer that controls the mea-
surements, we develop a classification of computational resource power, leading naturally to a notion
of resource states for measurement-based classical computation. Surprisingly, the Greenberger-
Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
computational power of entangled resource states.

PACS numbers: 03.67.Lx, 03.65.Ud

Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational

∗janet@qipc.org
†d.browne@ucl.ac.uk

resource state

control computer

measurement

sites

FIG. 1: The control computer provides one bit of classical
information (downward arrows) to each site (circles in the re-
source state) determining the choice of measurement basis.
After the measurement, one bit of classical information (up-
ward arrow), such as the outcome of the binary measurement,
is sent back to the control computer.

power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-

control computer

resource state

measurement site

No Feed-Forward



Theory = Justify Implementation

Theorem. The post-selected partially rotated Blind QC protocol is still blind.
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Testing the quantum server

Client can find out if the server possesses any quantum technology

•  Measurement of the probability 
distributions for a fixed 
measurement setting

•  Comparison with the theoretical 
expectations
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Real Stuff 

Vazirani (07)

Can we test the validity of QM in the regime of 
exponential-dimension Hilbert Space?



Interactive Proofs

What can a computationally unbounded entity prove to a mere mortal (BPP)? 
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Asking help without trusting
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Interactive Proofs

Gottesman (04) - Aaronson $25 Challenge (07)

Does every language in the class BQP admit  an interactive protocol 
where the prover is in BQP and the verifier is in BPP?

Can we classically and efficiently verify 
quantum devices ?    



Bell pairs

Interactive Proofs

2-way classical channel

Classical Computer + 2 Provers + Entanglement = Quantum Computer 

$15



Interactive Proofs

Quantum Computer + Interactive Proof = 
Classical  Computer + Interactive Proof = 

PSPACE 
[Jain,Ji,Upadhyay,Watrous 2009]

Quantum Computer + Multi Interactive Proof = 
Classical  Computer + Multi Interactive Proof = 

NEXP 
[Kobayashi, Matsumoto, 2003]

parallel matrix multiplicative weights update method to a class of semidefinite programs



Entangled Provers

Quantum Computer + Multi Interactive Proof + Entanglement = 
Classical  Computer + Multi Interactive Proof + Entanglement =

[Broadbent, Fitzsimons, Kashefi 2010]

Classical Channel + Entanglement = Quantum Channel

Classical Computer + 2 Provers + Entanglement = Quantum Computer 



Speculation

Quantum computing adds no power to the 
interactive proof system 

even with multi provers and entanglement

Entanglement = Quantum memory



Bell pairs

Interactive proof 

Protocol 3 Universal Blind Quantum Computation with Entangled Servers

Initially, Servers 1 and 2 share
∣

∣Φ+
x,y

〉

= 1√
2
(|00〉 + |11〉) (x = 1, . . . , n, y = 1, . . . m).

1. Alice’s preparation with Server 1
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice chooses θ̃x,y ∈R {0,π/4, 2π/4, . . . , 7π/4} and sends it to Server 1, who measures his
part of

∣

∣Φ+
x,y

〉

in |±θ̃x,y
〉.
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We design an interactive protocol with only classical communication that 
replaces a turn for the verifier in a given quantum interactive proof system

the new protocol requires only classical resources for the verifier.

QMIP = MIP�

Anne Broadbent1, Joseph Fitzsimons1,2, Elham Kashefi 3 �

Abstract

We extend the recent result of Jain, Ji, Upadhyay and Watrous for quantum interac-
tive proof systems, QIP = IP, to the setting of multiple provers with shared entan-
glement to present that quantum computing adds no extra power to the interactive
proof even in this extended scenario: QMIP = MIP�. Previously, Kobayashi and Mat-
sumoto considered the similar question for the case of provers not sharing entanglement:
QMIP(n.e.) = MIP, however the question of how entanglement influences the power of
such proof systems remained wide open. Our proof completes the picture and can be
seen as a positive e�ect of shared entanglement in the multi-prover scenario, reducing
the power of the verifier to classical computing.
Our techniques are based on the adaptation of universal blind quantum computing (a
recent protocol introduced by us) to the context of interactive proof systems. We have
already used this method to show that any language in BQP has an interactive proof
system requiring only a BPP verifier, given two provers with shared entanglement. We
apply this construction to the QMIP scenario to show how shared entanglement between
provers can be used to reduce the requirement of the verifier to classical computing, with-
out reducing the expressive power of the interactive proof system, and while obtaining
essentially the same completeness and soundness.
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Summary

Classical Computer
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Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in
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