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Introduction

Warning:

These notes for a mini-course in week 5 of LI 2012, and have been constructed from the main body
of the much larger Menagerie notes, [110]. The method used to prepare them has been to delete
sections that were not more or less necessary for this course and then to add in new material.
(There will be some loose ends therefore, and missing links. These will be given with a ? as the
Latex refers to the original cross reference.)

If you want to follow up some of the ideas that lead out of these notes, just look at the version
of the Menagerie available on the nLab, [105], and if that does not have the relevant chapter, just
ask me! (Beware, the full present version is already over 870 pages in length, so, please, don’t print
too many copies!!!)

There are several points to make. As in the full Menagerie notes, there are no exercises as such,
but at various points if a proof could be expanded, or is left to the reader, then, yes, bold face
will be used to suggest that that is a useful place for more input from the reader. In lots of places,
reading the details is not that efficient a way of getting to grips with the calculations and ideas,
and there is no substitute for doing it yourself. That being said guidance as to how to approach
the subject will often be given.

Almost needless to say, there are things that have not been discussed here (or in the Menagerie
itself), and suggestions for additional material are welcome. Better still would be for the suggestions
to materialise into new entries on the nLab.

Introduction to the notes

The aim of these notes is to provide some background material for discussions of homotopy theory,
simplicial group methods, algebraic models for n-types, crossed modules, some combinatorial group
theory and to visit some other parts of low dimensional topology, useful for rewriting, initially in
the context of combinatorial group theory. We then will go over to a subject dear to me: homotopy
coherence, looking at it as both an exercise in applying rewriting, but also for its applications.
Finally we will try to move away from the group case towards more general rewrite systems and
thus towards ‘Combinatorial category theory’.

The notes will give more than I will cover in the talks and before the start the plan for the talks
is approximately as follows:

Lectures I. and II. Some combinatorial group theory and low dimensional homotopy: Presen-
tations, identities among relations, crossed modules, and crossed resolutions. Homological and
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homotopical syzygies. Higher generation by subgroups (Abels and Holz). Examples.
Lecture III. An introduction to homotopy coherence and its rewriting aspect. Homotopy coher-

ence and the resolution of a category. Examples of homotopy coherent diagrams and the homotopy
coherent nerve. Quasi-categories. The link with rewriting.

Lecture IV. How to adapt away from the group theory case... brief discussion of directed
homotopy, polygraphs etc. and how to work with rewriting and syzygies in the non-group case,
some pointers to combinatorial category theory.

Tim Porter, Anglesey, 2012.
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Chapter 1

Preliminaries

1.1 Groups and Groupoids

Before launching into crossed modules, we need a word on groupoids. By a groupoid, we mean a
small category in which all morphisms are isomorphisms. (If you have not formally met categories
then do not worry, the idea will come through without that specific formal knowledge, although a
quick glance at Wikipedia for the definition of a category might be a good idea at some time soon.
You do not need category theory as such at this stage.) These groupoids typically arise in three
situations (i) symmetry objects of a fibered structure, (ii) equivalence relations, and (iii) group
actions. It is worth noting that several of the initial applications of groups were thought of, by
their discoverers, as being more naturally this type of groupoid structure.

For the first, assume we have a family of sets {Xa : a ∈ A}. Typically we have a function
f : X → A and Xa = f−1a for a ∈ A. We form the symmetry groupoid of the family by taking
the index set, A, as the set of objects of the groupoid, G, and, if a, a′ ∈ A, then G(a, a′), the set of
arrows in our symmetry groupoid from a to a′, is the set Bijections(Xa, Xa′). This G will contain
all the individual symmetry groups / permutation groups of the various Xa, but will also record
comparison information between different Xas.

Of course, any group is a groupoid with one object and if G is any groupoid, we have, for each
object a of G, a group G(a, a), of arrows that start and end at a. This is the ‘automorphism group’,
autG(a), of a within G. It is also referred to as the vertex group of G at a, and denoted G(a). This
later viewpoint and notation emphasise more the combinatorial, graph-like side of G’s structure.
Sometimes the notation G[1] may be used for G as the process of regarding a group as a groupoid
is a sort of ‘suspension’ or ‘shift’. It is one aspect of ‘categorification’, cf. Baez and Dolan, [7].

That combinatorial side is strongly represented in the second situation, equivalence relations.
Suppose that R is an equivalence relation on a set X. Going back to basics, R is a subset of X×X
satisfying:

(a) if a, b, c ∈ X and (a, b) and (b, c) ∈ R, then (a, c) ∈ R, i.e., R is transitive;

(b) for all a ∈ X, (a, a) ∈ R, alternatively the diagonal ∆ ⊆ R, i.e., R is reflexive;

(c) if a, b ∈ X and (a, b) ∈ R, then (b, a) ∈ R, i.e., R is symmetric.

Two comments might be made here. The first is ‘everyone knows that!’, the second ‘that is not the
usual order to put them in! Why?’

9
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It is a well known, but often forgotten, fact that from R, you get a groupoid (which we will
denote by R). The objects of R are the elements of X and R(a, b) is a singleton if (a, b) ∈ R and
is empty otherwise. (There is really no need to label the single element of R(a, b), when this is
non empty, but it is sometimes convenient to call it (a, b) at the risk of over using the ordered pair
notation.) Now transitivity of R gives us a composition function: for a, b, c ∈ X,

◦ : R(a, b)×R(b, c)→ R(a, c).

(Remember that a product of a set with the empty set is itself always empty, and that for any set,
there is a unique function with domain ∅ and codomain the set, so checking that this composition
works nicely is slightly more subtle than you might at first think. This is important when handling
the analogues of equivalence relations in other categories., then you cannot just write (a, b)◦(b, c) =
(a, c), or similar, as ‘elements’ may not be obvious things to handle.) Of course this composition
is associative, but if you have not seen the verification, it is important to think about it, looking
for subtle points, especially concerning the empty set and empty function and how to do the proof
without ‘elements’.

This composition makes R into a category, since (a) gives the existence of identities for each
object. (Ida = (a, a) in ‘elementary’ notation.) Finally (c) shows that each (a, b) is invertible, so
R is a groupoid. (You now see why that order was the natural one for the axioms. You cannot
prove that (a, a) is an identity until you have a composition, and similarly until you have identities,
inverses do not make sense.) We may call R, the groupoid of the equivalence relation R.

This shows how to think of R as a groupoid, R. The automorphism groups, R(a), are all
singletons as sets, so are trivial groups. Conversely any groupoid, G, gives a diagram

Arr(G)
s //
t
// Ob(G)

i
oo

with s = ‘source’, t = ‘target’. It thus gives a function

Arr(G)
(s,t) // Ob(G)×Ob(G) .

The image of this function is an equivalence relation as is easily checked. We will call this equivalence
relation R for the moment. If G is a groupoid such that each G(a) is a trivial group, then each
G(a, b) has at most one element (check it), so (s, t) is a one-one function and it is then trivial to
note that G is isomorphic to the groupoid of the equivalence relation, R.

We have looked at this simple case in some detail as in applications of the basic ideas, especially
in algebraic geometry, arguments using elements are quite tricky to give and the initial intuition
coming from this set-based case can easily be forgotten.

The third situation, that of group actions, is also a common one in algebra and algebraic
geometry. Equivalence relations often come from group actions. If G is a group and X is a G-set
with (left) G-action,

G×X // X

(g, x) g · x
,

(i.e., a function act(g, x) = g · x, which must satisfy the rules 1 · x = x and for all g1, g2 ∈ G,
g1 · (g2 · x) = (g1g2) · x, a sort of associativity law), then we get a groupoid ActG(X), that will be
called the action groupoid of the G-set, as follows:
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• the objects of ActG(X) are the elements of X;

• if a, b,∈ X,
ActG(X)(a, b) ∼= {g | g · a = b}.

An important word of caution is in order here. Logical complications can occur here ifActG(X)(a, b)
is set equal to {g | g · a = b}, since then a g can occur in several different ‘hom-sets’. A good way
to avoid this is to take

ActG(X)(a, b) = {(g, a) | g · a = b}.

This is a non-trivial change. It basically uses a disjoint union, but although very simple, it is
fundamental in its implications. We could also do it by taking ArrG(X) = G×X with source and
target maps s(g, x) = x, t(g, x) = g ·x. (It is useful, if you have not seen this before, to see how the
various parts of the definition of an action match with parts of the structural rules of a groupoid.
This is important as it indicates how, much later on, we will relax those rules in various ways.)

We will sometimes use the notation, Gy X, when discussing a left action of a group G on X.

In a groupoid, G, we say two objects, x and y are in the same connected component of G, if
G(x, y) is not empty. This gives an equivalence relation on the set of objects of G, as you can
easily check. The equivalence classes re called the connected components of G and the set of
connected components is usually denoted π0(G), by analogy with the usual notion for the set of
connected components of a topological space.

We have not discussed morphisms of groupoids. These are straightforward to define and to
work with. Together groupoids and the morphisms between them form a category, the category of
groupoids, which will be denoted Grpds.

(As we introduced structures of various types, we will usually introduce a corresponding form
of morphism and it will be rare that the resulting ‘context’ of objects and morphisms does not form
a category. It is important to look up the definition of categories and functors, but for the moment
you will not need to know any ‘category theory’ to read the notes. It will suffice to get to grips
with that as we go further and have good motivating examples for what is needed.)

Most of the concepts that we will be handling in what follows exist in many-object, groupoid
versions as well as single-object, group based ones. For simplicity we will often, but not always,
give concepts in the group based form, and will leave the other many-object form ‘to the reader’.
The conversion is usually not that difficult.

For more details on the theory of groupoids, the best two sources are Ronnie Brown’s book,
[27] or Phil Higgins’ monograph, now reprinted as [71].

1.2 A very brief introduction to cohomology

Partially as a case study, at least initially, we will be looking at various constructions that relate
to group cohomology. Later we will explore a more general type of (non-Abelian) cohomology,
including ideas about the non-Abelian cohomology of spaces, but that is for later. To start with
we will look at a simple group theoretic problem that will be used for motivation at several places
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in what follows. Much of what is in books on group cohomology is the Abelian theory, whilst we
will be looking more at the non-Abelian one. If you have not met cohomology at all, take a look at
the Wikipedia entries for group cohomology. You may not understanding everything, but there are
ideas there that will recur in what follows, and some terms that are described there or on linked
entries, that will be needed later.

1.2.1 Extensions.

Given a group, G, an extension of G by a group K is a group E with an epimorphism p : E → G
whose kernel is isomorphic to K (i.e. a short exact sequence of groups

E : 1→ K → E
p→ G→ 1.

As we asked that K is isomorphic to Ker p, we could have different groups E perhaps fitting into
this, yet they would still be essentially the same extension. We say two extensions, E and E ′, are
equivalent if there is an isomorphism between E and E′ compatible with the other data. We can
draw a diagram

E

��

1 // K //

=

��

E //

∼=
��

G //

=

��

1

E ′ 1 // K // E′ // G // 1

A typical situation might be that you have an unknown group E′ that you suspect is really E (i.e.
is isomorphic to E). You find a known normal subgroup K of E is isomorphic to one in E′ and
that the two quotient groups are isomorphic,

1 // K //

∼=
��

E //

?
���
�
� G //

∼=
��

1

1 // K ′ // E′ // G′ // 1

(But always remember, isomorphisms compare snap shots of the two structures and once chosen
can make things more ‘rigid’ than perhaps they really ‘naturally’ are. For instance, we might have
G a cyclic group of order 5 generated by an element a, and G′ one generated by b. ‘Naturally’
we choose an isomorphism ϕ : G → G′ to send a to b, but why? We could have sent a to any
non-identity element of G′ and need to be sure that this makes no difference. This is not just
‘attention to detail’. It can be very important. It stresses the importance of Aut(G), the group of
automorphisms of G in this sort of situation.)

A simple case to illustrate that the extension problem is a valid one, is to consider K = C3 =
〈a | a3〉, G = C2 = 〈b | b2〉.

We could take E = S3, the symmetric group on three symbols, or alternatively D3 (also called
D6 to really confuse things, but being the symmetry group of the triangle). This has a presentation
〈a, b | a3, b2, (ab)2〉. But what about C6 = 〈c | c6〉? This has a subgroup {1, c2, c4} isomorphic to K
and the quotient is isomorphic to G. Of course, S3 is non-Abelian, whilst C6 is. The presentation of
C6 needs adjusting to see just how similar the two situations are. This group also has a presentation
〈a, b | a3, b2, aba−1b〉, since we can deduce aba−1b = 1 from [a, b] = 1 and b2 = 1 where in terms
of the old generator c, a = c2 and b = c3. So there is a presentation of C3 which just differs by a
small ‘twist’ from that of S3.
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How could one be sure if S3 and C6 are the ‘only’ groups (up to isomorphism) that we could
put in that central position? Can we classify all the extensions of G by K?

These extension problems were one of the impetuses for the development of a ‘cohomological’
approach to algebra, but they were not the only ones.

1.2.2 Invariants

Another group theoretic input is via group representation theory and the theory of invariants. If
G is a group of n × n invertible matrices then one can use the simple but powerful tools of linear
algebra to get good information on the elements of G and often one can tie this information in to
some geometric context, say, by identifying elements of G as leaving invariant some polytope or
pattern, so G acts as a subgroup of the group of the symmetries of that pattern or object.

If, therefore, we use the group Gl(n,K) of such invertible matrices over some field K, then we
could map an arbitrary G into it and attempt to glean information on elements of G from the
corresponding matrices. We thus consider a group homomorphism

ρ : G→ Gl(n,K),

then look for nice properties of the ρ(g). of course, ρ need not be a monomorphism and then we
will loose information in the process, but in any case such a morphism will make G act (linearly)
on the vector space Kn. We could, more generally, replace K by a general commutative ring R, in
particular we could use the ring of integers, Z, and then replace Kn by a general module, M , over
R. If R = Z, then this is just an Abelian group. (If you have not formally met modules look up a
definition. The theory feels very like that of vector spaces to start with at least, but as elements
in R need not have inverses, care needs to be taken - you cannot cancel or divide in general, so
rx = ry does not imply x = y! Having looked up a definition, for most of the time you can think of
modules as being vector spaces or Abelian groups and you will not be far wrong. We will shortly
but briefly mention modules over a group algebra, R[G], and that ring is not commutative, but
again the complications that this does cause will not worry us at all.)

We can thus ‘represent’ G by mapping it into the automorphism group of M . This gives M the
structure of a G-module. We look for invariants of the action of G on M - what are they? Suppose
that G is some group of symmetries of some geometric figure or pattern, that we will call X, in
Rn, then for each g ∈ G, gX = X, since g acts by pushing the pattern around back onto itself. An
invariant of G, considered as acting on M , or, to put it more neatly, of the G-module, M , is an
element m in M such that g.m = m for all g ∈ G. These form a submodule,

MG = {m | gm = m for all g ∈ G}.

Clearly, it will help in our understanding of the structure of G if we can calculate and analyse
these modules of invariants. Now suppose we are looking at a submodule N of M , then NG

is a submodule of MG and we can hope to start finding invariants, perhaps by looking at such
submodules and the corresponding quotient modules, M/N . We have a short exact sequence

0→ N →M →M/N → 0,

but, although applying the (functorial) operation (−)G does yield

0→ NG →MG → (M/N)G,
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the last map need not be onto so we may not get a short exact sequence and hence a nice simple
way of finding invariants!

Example: Try G = C2 = {1, a}, M = Z, the Abelian group of integers, with G action,
a.n = −n, and N = 2Z, the subgroup of even integers, with the same G action. Now calculate the
invariant modules MG and NG; they are both trivial, but M/N ∼= Z2, and ..., what is (M/N)G for
this example?

The way of studying this in general is to try to to continue the exact sequence further to the right
in some universal and natural way (via the theory of derived functors). This is what cohomology
does. We can get a long exact sequence,

0→ NG →MG → (M/N)G → H1(G,N)→ H1(G,M)→ H1(G,M/N)→ H2(G,N)→ . . . .

But what are these Hk(G,M) and how does one get at them for calculation and interpretation?
In fact what is cohomology in general?

Its origins lie within Algebraic Topology as well as in Group Theory and that area provides
some useful intuitions to get us started, before asking how to form group cohomology.

1.2.3 Homology and Cohomology of spaces.

Naively homology and cohomology give methods for measuring the holes in a space, holes of different
dimensions yield generators in different (co)homology groups. The idea is easily seen for graphs
and low dimensional simplicial complexes.

First we recall the definition of simplicial complex as we will need to be fairly precise about
such objects and their role in relation to triangulations and related concepts.

Definition: A simplicial complex, K, is a set of objects, V (K), called vertices and a set, S(K),
of finite non-empty subsets of V (K), called simplices. The simplices satisfy the condition that if
σ ⊂ V (K) is a simplex and τ ⊂ σ, τ 6= ∅, then τ is also a simplex.

We say τ is a face of σ. If σ ∈ S(K) has p+ 1 elements it is said to be a p-simplex. The set of
p-simplices of K is denoted by Kp. The dimension of K is the largest p such that Kp is non-empty.

We will sometimes use the notation, P(X), for the power set of a set X, i.e., the set of subsets of
X. Suppose that X = {0, . . . , p}, then there is a simple example of a simplicial complex, known as
the standard abstract p-simplex, ∆[n], with vertex set, V (∆[n]) = X and with S(∆[n]) = P(X)\{∅},
in other words all non-empty subsets of X are to be simplices. (If you have not met simplicial
complexes before this is a good example to work with working out what it looks like and
‘feels like’ for n = 0, 1, 2 and 3. It is too regular to be general, so we will, below, see another
example which is perhaps a bit more typical.

When thinking about simplicial complexes, it is important to have a picture in our minds of
a triangulated space (probably a surface or similar, a wireframe as in computer graphics). The
simplices are the triangles, tetrahedra, etc., and are determined by their sets of vertices. Not every
set of vertices need be a simplex, but if a set of vertices does correspond to a simplex then all its
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non-empty subsets do as well, as they give the faces of that simplex. Here is an example:

4

s
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1

3
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........
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..............................................

......................
......................
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......................

......................
.........................................................................................................................................................

0 ss
s

Here V (K) = {0, 1, 2, 3, 4} and S(K) consists of {0, 1, 2}, {2, 3}, {3, 4} and all the non-empty
subsets of these. Note the triangle {0, 1, 2} is intended to be solid, (but I did not work out how to
do it on the Latex system I was using!)

Simplicial complexes are a natural combinatorial generalisation of (undirected) graphs. They
not only have vertices and edges joining them, but also possible higher dimensional simplices
relating paths in that low dimensional graph. It is often convenient to put a (total) order on the
set V (K) of vertices of a simplicial complex as this allows each simplex to be specified as a list
σ = 〈v0, v1, . . . , vn〉 with v0 < v1 < . . . < vn, instead of as merely a set {v0, v1, . . . , vn} of vertices.
This, in turn, allows us to talk, unambiguously, of the kth face of such a simplex, being the list
with vk omitted, so the zeroth face is 〈v1, . . . , vn〉, the first is 〈v0, v2, . . . , vn〉 and so on.

Although strictly speaking different types of object, we tend to use the terms ‘vertex’ and ‘0-
simplex’ interchangeably and also use ‘edge’ as a synonym for ‘1-simplex’. We will usually write K0

for V (K) and may write K1 for the set of edges of a graph, thought of as a 1-dimensional simplicial
complex.

An abstract simplicial complex is a combinatorial gadget that models certain aspects of a spatial
configuration. Sometimes it is useful, perhaps even necessary, to produce a topological space from
that data in a simplicial complex.

Definition: To each simplicial complex K, one can associate a topological space called the
polyhedron of K often also called or geometric realisation of K and denoted |K|.

This can be constructed by taking a copy K(σ) of a standard topological p-simplex for each
p-simplex of K and then ‘gluing’ them together according to the face relations encoded in K.

Definition: The standard (topological) p-simplex is usually taken to be the convex hull of the
basis vectors e1, e2, . . . , ep+1 in Rp+1, to represent each abstract p-simplex, σ ∈ S(K), and then
‘gluing’ faces together, so whenever τ is a face of σ we identify K(τ) with the corresponding face
of K(σ). This space is usually denoted ∆p.

There is a canonical way of constructing |K| as follows: |K| is the set of all functions from
V (K) to the closed interval [0, 1] such that

• if α ∈ |K|, the set

{v ∈ V (K) | α(v) 6= 0}

is a simplex of K;
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• for each v ∈ V (K),
∑

α∈V (K)

α(v) = 1.

We can put a metric d on |K| by

d(α, β) =
( ∑
v∈V (K)

(pv(α)− pv(β))2
) 1

2
.

This however gives |K| as a subspace of R#(V (K)), and so is usually of much higher dimension then
might seem geometrically significant in a given context. For instance, the above example would be
represented as a subspace of R5, rather than R2, although that is the dimension of the picture we
gave of it.

Given two simplicial complexes K, L, then a function on the vertex sets, f : V (K) → V (L)
is a simplicial map if it preserves simplices. (But that needs a bit of care to check out its exact
meaning! ... for you to do. Look it up, or better try to see what the problem might be, try to
resolve it yourself and then look it up! )

1.2.4 Betti numbers and Homology

One of the first sorts of invariant considered in what was to become Algebraic Topology was the
family of Betti numbers. Given a simple shape, the most obvious piece of information to note would
be the number of ‘pieces’ it is made up of, or more precisely, the number of components. The idea
is very well known, at least for graphs, and as simplicial complexes are closely related to graphs,
we will briefly look at this case first.

For convenience we will assume the vertices V = V (Γ) of a given finite graph, Γ, are ordered,
so for each edge e of Γ, we can assign a source s(e) and a target t(e) amongst the vertices. Two
vertices v and w are said to be in the same component of Γ if there is a sequence of edges e1, . . . , ek
of Γ joining them1. There are, of course, several ways of thinking about this, for instance, define
a relation ∼ on V by : for each e, s(e) ∼ t(e). Extend ∼ to an equivalence relation on V in the
standard way, then v ∼ w if and only if they are in the same component. The zeroth Betti number,
β0(Γ), is the number of components of Γ.

The first Betti number, β1(Γ), somewhat similarly, counts the number of cycles of Γ. We have
ordered the vertices of Γ, so have effectively also directed its edges. If e is an edge, going from u
to v, (so u < v in the order on Γ0), we write e also for the path going just along e and −e for
that going backwards along it, then extend our notation so s(−e) = t(e) = v, etc. Adding in these
‘negative edges’ corresponds to the formation of the symmetric closure of ∼. For the transitive
closure we need to concatenate these simple one-edge paths: if e′ is an edge or a ‘negative edge’
from v to w, we write e+ e′ for the path going along e then e′. Playing algebraically with s and t
and making them respect addition, we get a ‘pseudo-calculation’ for their difference ∂ = t− s:

∂(e+ e′) = t(e+ e′)− s(e+ e′) = t(e) + t(e′)− s(e)− s(e′) = t(e′)− s(e) = u− w,

since t(e) = v = s(e′). In other words, defined in a suitable way, we would get that ∂, equal to
‘target minus source’, applies nicely to paths as well as edges, so that, for instance, two vertices

1In fact here, the ordering we have assumed on the vertices complicates the exposition a little, but it is useful
later on so will stick with it here.
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would be related in the transitive closure of ∼ if there was a ‘formal sum’ of edges that mapped
down to their ‘difference’. We say ‘formal sum’ as this is just what it is. We will need ‘negative
vertices’ as well as ‘negative edges’.

We set this up more formally as follows: Let
C0(Γ) = the set of formal sums,

∑
v∈Γ0

avv with av ∈ Z, the additive group of integers, (an
alternative form is to take av ∈ R.;
C1(Γ) = the set of formal sums,

∑
e∈Γ1

bee with be ∈ Z,
where Γ1 denotes the set of edges of Γ, and ∂ : C1(Γ)→ C0(Γ) defined by extending additively the
mapping given on the edges by ∂ = t− s.

The task of determining components is thus reduced to calculating when integer vectors differ by
the image of one in C1(Γ). The Betti number β0(Γ) is just the rank of the quotient C0(Γ)/Im(∂),
that is, the number of free generators of this commutative group. This would be exactly the
dimension of this ‘vector space’ if we had allowed real coefficients in our formal sums not just
integer ones.

Having reformulated components and ∼ in an algebraic way, we immediately get a pay-off in
our determination of cycles. A cycle is a path which starts and ends at the same vertex; a path is
being modelled by an element in C1(Γ), so a cycle is an element x in C1(γ) satisfying ∂(x) = 0.
With this we have β1(Γ) = rank(Ker(∂)), a similar formulation to that for β0. The similarity is
even more striking if we replace the graph Γ by a simplicial complex K. We can then define in
general and in any dimension p, Cp(K) to be the commutative group of all formal sums

∑
σ∈Kp aσσ.

We next need to get an analogue of the ∂ = t − s formula. We want this to correspond to
the boundary of the objects to which it is applied. For instance, if σ was the triangle / 2-simplex,
〈v0, v1, v2〉, we would want ∂σ to be 〈v1, v2〉+ 〈v0, v1〉 − 〈v0, v2〉, since going (clockwise) around the
triangle, that cycle will be traced out:

〈v1〉

〈v0〉 〈v2〉........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
............................................................................................................................................................................

〈v0, v1〉 〈v1, v2〉

〈v0, v2〉

If we write, in general, diσ for the ith face of a p-simplex σ = 〈v0, . . . , vp〉, then in this 2-
dimensional example ∂σ = d0σ − d1σ + d2σ, changing the order for later convenience. This is the
sum of the faces with weighting (−1)i given to diσ. This is consistent with ∂ = t− s in the lower
dimension as t = d0 and s = d1. We can thus suggest that

∂ = ∂p : Cp(K)→ Cp−1(K)

be defined on p-simplices by

∂pσ =

p∑
i=0

(−1)idiσ,

and then extended additively to all of Cp(K).

As an example of what this does, look at a square K, with vertices v0, v1, v2, v3, edges 〈vi, vi+1〉
for i = 0, 1, 2 and 〈v0, v2〉, and 2-simplices σ1 = 〈v0, v1, v2〉 and σ2 = 〈v0, v2, v3〉. As the square
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has these two 2-simplices, we can think of it as being represented by σ1 + σ2 in C2(K), then
∂(σ1 + σ2) = 〈v0, v1〉 + 〈v1, v2〉 + 〈v2, v3〉 − 〈v0, v3〉, as the two occurrences of the diagonal 〈v0, v2〉
cancel out as they have opposite sign, and this is the path around the actual boundary of the
square.

It is important to note that the boundary of a boundary is always trivial, that is, the composite
mapping

Cp(K)
∂p→ Cp−1(K)

∂p−1→ Cp−2(K)

is the mapping sending everything to 0 ∈ Cp−1(K).
The idea of the higher Betti numbers, βp(K), is that they measure the number of p-dimensional

‘holes’ in K. Imagine we has a tunnel-shaped hole through a space K, then we would have a cycle
around the hole at one end of the tunnel and another around the hole at the other end. If we
merely count cycles then we will get at least two such coming from this hole, but these cycles are
linked as there is the cylindrical hole itself and that gives a 2 dimensional element with boundary
the difference of the two cycles. In general, a p-cycle will be an element x of Cp(K) with trivial
boundary, i.e., such that ∂x = 0, and we say that two p-cycles x and x′ are homologous if there is
an element y in Cp+1(K) such that ∂y = x − x′. The ‘holes’ correspond to classes of homologous
cycles as in our tunnel.

The number of ‘independent’ cycle classes in the various dimensions give the corresponding
Betti number. Using some algebra, this is easier to define rigorously, but, at the same time, the
geometric insights from the vaguer description are important to try to retain. (They are not always
put in a central enough position in textbooks!) This algebraic approach identifies βp(K) as the
(torsion free) rank of a certain commutative group formed as follows: the pth homology group of
K is defined to be the quotient:

Hp(K) =
Ker(∂p : Cp(K)→ Cp−1(K))

Im(∂p : Cp+1(K)→ Cp(K))
,

and then βp(K) = rank(Hp(K)).
Thus far we have from K built a sequence of modules, C(K)n, generated by the n-simplices

of K and with homomorphisms ∂p : Cp(K) → Cp−1(K) satisfying ∂p−1∂p = 0.. (We abstract this
structure calling it a chain complex. We will look at in more detail at several places later in these
notes.)

Exercises: Try to investigate this homology in some very simple situations perhaps including
some of the following:
(a) V (K) = {0, 1, 2, 3}, S(K) = P(V (K)) \ {∅, {0, 1, 2, 3}}. This is an empty tetrahedron so one
expects one 3-dimensional hole., i.e., β3(K) = 1 but the others are zero.
(b) ∆[2] is the (full) triangle and ∂∆[2] its boundary, so is an empty triangle. Find the homology
of ∂∆[2]× ∂∆[2], which is a triangulated torus.
(c) Find the homology of ∆[1]× ∂∆[2], which is a cylinder.

Note, it is up to you to find the meaning of product in this context. Remember the discussion
of the square, above, which is, of course ∆[1]×∆[1].

Often cohomology is more use than homology. Starting with K and a module M work out
Cn(K,M) = Hom(C(K)n,M). Now the boundary maps increase (upper) degree by one. The
cohomology is Hn(K,M) = Ker ∂n/Im∂n−1. Again this measures ‘holes’ detectable by M ! What
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does that mean? The cohomology groups are better structured than the homology ones, but how
are these invariants be interpreted?

A simplicial map, f : K → L, will induce a map on cohomology groups. Try it! We can
equally well do this for chain or ‘cochain complexes’. There is a notion of chain map between chain
complexes, say, ϕ : C → D and such a map will induce maps on both homology ad cohomology.
Of special interest is when the induced maps are isomorphisms. The chain map is then called a
quasi-isomorphism.

1.2.5 Interpretation

The question of interpretation is a very crucial question, but, rather than answering it now, we
will return to the cohomology of groups. The terminology may seem a bit strange. Here we have
been talking about measuring holes in a space, so how does that relate to groups. The idea is
that one builds a space from a group in such a way as the properties of the space reflect those of
the group in some sense. The simplest case of this is an Eilenberg-MacLane space, K(G, 1). The
defining property of such a space is that its fundamental group is G whilst all other homotopy
groups are trivial. Eilenberg and Maclane showed that however such a space was constructed its
cohomology could be got just from G itself and that cohomology was related with the extension
problem and the invariant module problem. Their method was to build a chain complex that would
copy the structure of the chain complex on the K(G, 1). This chain complex, the bar resolution,
was very important because although in the group case there was an alternative route via the
topological space K(G, 1), for many other types of algebraic system (Lie algebras, associative
algebras, commutative algebras, etc.), the analogous basic construction could be used, and in those
contexts no space was available. Thus from G, we want to construct a nice chain complex directly.
The construction is reasonably simple. It gives a natural way of getting a chain complex, but it
does not exploit any particular features of the group so if the group is infinite, the modules will be
infinitely generated, which will occupy us later, as we use insights from combinatorial group theory
to construct smaller models for equivalent resolutions, and better still look at ‘crossed’ versions.

For the moment we just need the definition (adapted from the account given in Wikipedia):

1.2.6 The bar resolution

The input data is a group G and a module M with a left G-action (i.e., a left G-module).
For n ≥ 0, we let Cn(G,M) be the group of all functions from the n-fold product Gn to M :

Cn(G,M) = {ϕ : Gn →M}

This is an Abelian group; its elements are called the n-cochains. We further define group homo-
morphisms

∂n : Cn(G,M)→ Cn+1(G,M)

by

∂n(ϕ)(g0, . . . , gn) = g0 · ϕ(g1, . . . , gn)

+

n−1∑
i=0

(−1)i+1ϕ(g0, . . . , gi−1, gigi+1, gi+2, . . . , gn)

+(−1)n+1ϕ(g0, . . . , gn−1)
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These are known as the coboundary homomorphisms. The crucial thing to check here is ∂n+1 ◦∂n =
0, thus we have a chain complex and we can ‘compute’ its cohomology. For n ≥ 0, define the group
of n-cocycles as:

Zn(G,M) = Ker ∂n

and the group of n-coboundaries as{
B0(G,M) = 0

Bn(G,M) = Im(∂n−1) n ≥ 1

and

Hn(G,M) = Zn(G,M)/Bn(G,M).

Thinking about this topologically, it is as if we had constructed a sort of space / simplicial complex,
K, out of G by taking Kn = Gn. We will see this idea many times later on. This cochain complex
is often called the bar resolution. It exists in a normalised and a unnormalised form. This is the
unnormalised one. It can also be constructed via a chain complex, sometimes denoted βG, so that
this C(G,M) is formed by taking Hom(βG,M), in a suitable sense.

There are lots of properties that are easy to check here. Some will be suggested as exercises for
you to do. For others, you can refer to some of the standard textbooks that deal with introductions
to group cohomology, for instance, K. Brown’s [25].

One further point is that this cohomology used a module, and so encodes ‘commutative’ or
Abelian information. We will be also looking at the non-Abelian case.

Before we leave this introduction to cohomology, it should be mentioned that in the topological
case, if we do not have a simplicial complex to start with, we either use the singular complex (see
next section) which is a simplicial set and not a simplicial complex, but the theory extends easily
enough, or we use open covers of the space to build a system of simplicial complexes approximating
to the space. We will see this later as Čech cohomology. This is most powerful when the module
M of coefficients is allowed to vary over the various points of the space. For this we will need the
notion of sheaf, which will be discussed in some detail later.

1.3 Simplicial things in a category

1.3.1 Simplicial Sets

Simplicial objects are extremely useful. Simplicial sets extend ideas of simplicial complexes in a neat
way. They combine a reasonably simple combinatorial definition with subtle algebraic properties.
Their original construction was motivated in algebraic topology by the singular complex of a space.

If X is a topological space, Sing(X) denotes the collection of sets and mappings defined by

Sing(X)n = Top(∆n, X), n ∈ N,

where ∆n is the usual topological n-simplex given, for example, by

{x ∈ Rn+1 |
∑

xi = 1; all xi ≥ 0}.
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There are inclusion maps δi : ∆n−1 → ∆n and ‘squashing’ maps σi : ∆n+1 → ∆n and these induce
the face maps,

di : Sing(X)n → Sing(X)n−1, 0 ≤ i ≤ n,

and degeneracy maps,

si : Sing(X)n → Sing(X)n+1, 0 ≤ i ≤ n.

These satisfy the simplicial identities,

didj = dj−1di if i < j,

disj =


sj−1di if i < j,
id if i = j or j + 1,
sjdi−1 if i > j + 1,

sisj = sjsi−1 if i > j.

Generally this structure is abstracted to give a family of sets, {Kn : n ≥ 0}, face maps di : Kn →
Kn−1 and degeneracy maps, si : Kn → Kn+1, satisfying these simplicial identities. The result is a
simplicial set.

Remark: Using the singular complex, we can proceed much as in our earlier discussion to
define singular homology groups for a space. Starting from Sing(X), take a free Abelian group in
each dimension then take the alternating sum of the faces to get a boundary map and thus a chain
complex, C(X), then take the homology of that. (We do not give details as this is very readily
available in standard texts on algebraic topology.)

If C is any category, a simplicial object in C is given by a family of objects of C, {Kn : n ≥ 0}
and morphisms di and si as above. If ∆ denotes the category of finite ordinal sets, [n] = {0 < 1 <
. . . < n} and order preserving functions between them, then a simplicial object in C is simply a
functor, K : ∆op → C, so the obvious definition of a simplicial map will be a natural transformation
of functors, f : K → L. This translates as a family of morphisms, fn : Kn → Ln, compatible in
the obvious way with the di and si.

We denote the category of simplicial objects in C by Simp(C) or Simp.C, but will shorten
Simp(Sets) to S.

The category, S, models all homotopy types of spaces. It is a presheaf category, so is a topos
and has a lot of nice structure including products, and mapping space objects S(K,L), where

S(K,L)n = S(K ×∆[n], L).

Here ∆[n] = ∆(−, [n]), the standard simplicial n-simplex. This has a special n-simplex, namely
the element ιn in ∆[n]n determined by the identity map.

The Yoneda lemma, from category theory, gives us an isomorphism S(∆[n],K) ∼= Kn, and so,
for any n-simplex, x, gives us a simplicial map pxq : ∆[n] → K, which is sometimes called the
name, or representing map of x. From pxq, you get x back by evaluating on pxq on ιn.

Examples of simplicial sets.
First let us have a trivial example, ..., trivial but often very useful.
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Definition: Given a set, X, the discrete simplicial set, K(X, 0), is defined to have K(X, 0)n =
X for all n and to have all face and degeneracy maps given by the identity function on X. A
simplicial set K is said to be discrete if it is isomorphic to one of form K(X, 0) for some set X.
(An easy extension gives the notion of discrete simplicial object in a category.)

With more substance, we have the following examples:

(i) If A is a small category or a groupoid, we can form a simplicial set, Ner(A), defined by
Ner(A)n = Cat([n],A), with the obvious face and degeneracy maps induced by composition with
the analogues of the δi and σi. The simplicial set, Ner(A), is called the nerve of the category A.
An n-simplex in Ner(A) is a sequence of n composable arrows in A.

This is easier to understand in pictures:

Ner(A)0 is the set of objects;

Ner(A)1 is the set of arrows or morphisms;

Ner(A)2 is the set of composable pairs of morphisms, so σ ∈ Ner(A)2 will be of form σ =

(a0
α1→ a1

α2→ a2). Visualising this as a triangle shows the faces more clearly:

a1

α2

!!BBBBBBBB

a0

α1

==||||||||
α1α2

// a2

The case Ner(A)n for n = 3, etc. are left to you. This is worth doing if you have not seen it before.

Note that in these contexts, we will sometimes use composition in the ‘left-to-right’ order, but
in general categorical settings will use gf being first do f then g. To stick exclusively to one or the
other is usually awkward, so we use both as appropriate. This sometimes means we have to take
extra care over the conventions that we are using at a particular time.

If we have a group, G, consider it as the one object groupoid G[1] as before, then Ner(G[1]) is
really the simplicial set corresponding to our construction of the bar resolution of G. It is called
the nerve of G, and is a classifying space for G, an aspect that we will explore later in some detail.

If we have a discrete category A, i.e. A has no non-identity morphisms between objects, then
A is really just a set, and Ner(A) is a discrete simplicial set.

(ii) Suppose we have a simplicial complex K, then it almost is a simplicial set. There are some
problems, but they are easily resolved. If we, a bit näıvely, set Kn to be the set of n-simplices of
K, then how are we to define the face maps, and if K has no simplices in dimensions greater than
n say, Kn+1 will be empty so degeneracies cause problems as you cannot map from a non-empty
set to an empty one!

That was too näıve, so we pick a partial order on the vertices ofK such that any simplex is totally
ordered, (for instance, a total order on V (K) does the job, but may not be convenient sometimes
and so may be ‘overkill’). Now, reset Kn to be the set of all ordered strings, σ = 〈x0, . . . , xn〉
of vertices, for which the underlying (unordered) set is a simplex of K. The degeneracies now
can be handled simply. For example, if σ = 〈x0, x1〉 is a 1-simplex in this simplicial set, then
s0σ = 〈x0, x0, x1〉, whilst s1σ = 〈x0, x1, x1〉. (The details are left to you to complete. Note we did
not specify how to define the face maps, so you need to do that as well and to verify that it all fits
together neatly.)
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If you want to learn more about simplicial set theory, the old paper of Curtis, [53] and Peter
May’s monograph, [97], are very readable. There is a fairly well behaved notion of homotopy in
S, and simplicial homotopy theory is the subject of many good books. A chatty introduction to it
can be found in Kamps and Porter, [81], which, of course, is highly recommended!

The homotopy theory of simplicial sets yields a notion of weak equivalence. (This is similar to
‘quasi-isomorphism’ in the homotopy theory of chain complexes.) There are homotopy groups and
f : K → L is a weak equivalence if f induces isomorphisms on all homotopy groups. We will not
need the detailed definition yet.

We next look at some simplicial algebraic gadgets, especially simplicial groups and simplicially
enriched groupoids. We will concentrate on the first but must mention the second for completeness.

1.3.2 Simplicial Objects in Categories other than Sets

If A is any category, we can form Simp.A = A∆op
. (Sometimes we will use a variant notation:

Simp(A), as occasionally the first notation may be ambiguous.)

These categories often have a good notion of homotopy as briefly mentioned above; see also the
discussion of simplicially enriched categories in [81]. Of particular use are:

(i) Simp.Ab, the category of simplicial Abelian groups. This is equivalent to the category of
chain complexes by the Dold-Kan theorem, which we will mention in more detail later.

(ii) Simp.Grps, the category of simplicial groups. This ‘models’ all connected homotopy
types, by Kan, [83] (cf., Curtis, [53]). There are adjoint functors G : Sconn → Simp.Grps,
W : Simp.Grps → Sconn, with the two natural maps GW → Id and Id → WG being weak
equivalences.

Results on simplicial groups by Carrasco, [37], generalise the Dold-Kan theorem to the non-
Abelian case, (cf., Carrasco and Cegarra, [38]).

(iii) ‘Simp.Grpds’: in 1984 Dwyer and Kan, [59], (and also Joyal and Tierney, and Duskin and
van Osdol, cf., Nan Tie, [103, 104]) noted how to generalise the (G,W ) adjoint pair to handle all
simplicial sets, not just the connected ones. (Beware there are several important printing errors in
the paper [59].) For this they used a special type of simplicial groupoid. Although the term used
in [59] was exactly that, ‘simplicial groupoid’, this is really a misnomer and may give the wrong
impression, as not all simplicial objects in the category of groupoids are used. A probably better
term would be ‘simplicially enriched groupoid’, although ‘simplicial groupoid with discrete objects’
is also used. We will denote this category by S−Grpds.

This category ‘models’ all homotopy types using a mix of algebra and combinatorial structure.

We will later describe both G and W in some detail, and will use simplicially enriched groupoids
and simplicially enriched categories as well.

(iv) Nerves of internal categories: Suppose that D is a category with finite limits and C is an
internal category in D. What does that mean? In our earlier discussion on groupoids, we had the
diagram that looked a bit like

C1

s //

t
// C0

i
oo

.
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We complete this one stage to build in the set of composable pairs C2 = C1 ×C0 C1 and the
multiplication/ composition map, which we denote here by m.

C2

p1 //
m //
p2 //

C1

s //

t
// C0

i
oo

.

We did this previously within the category of sets, but could do it equally well in D. We should also
mention an object C3 given by a ‘triple pullback’, which is useful when discussing the associativity
of composition. This will give us the analogue of a small category, but in which the object of objects
and the object of arrows are both themselves objects of D and the source target and composition
maps are all morphisms in that category.

If one interprets this for D = Sets, it becomes clear that this diagram that we seem to be
building is part of the diagram specifying the nerve of the small category, C, with C0 the set of
objects, C1 that of morphisms, C2 that of composable pairs and so on. (We have not specified the
two degeneracies from C1 to C2 in the diagram, but this is merely because we left the details of
the rules governing identities out of our earlier discussion.) This builds a simplicial object in D as
follows: take an n-fold pullback to get

Cn = C1 ×C0 C1 ×C0 C1 ×C0 . . .×C0 C1︸ ︷︷ ︸
n

,

define face and degeneracies by the same sort of rules as in the set based nerve, that is, in dimension
n, d0 and dn each leave out an end, whilst the di use the composition in the category to get a
composite of two adjacent ‘arrows’, and the degeneracies are ‘insertion of identities’. (Working out
how to do these morphisms in terms of diagrams is quite fun!) We thus get a simplicial object in
D called the nerve of the internal category, C. We will use this in several situations later in a key
way. In particular, we will use the case D = Grps.

Later on, we will use internal functors and natural transformations as well. For the moment, the
description of these structures is left to you. Notationally, we will write Cat(D) for the category
of internal categories in D. As you might expect, the above nerve construction is a functor from
Cat(D) to Simp(D). (If you know about such things, you might also expect that Cat(D) can be
thought of as a 2-category, . . . , you would be right, but we will leave that until much later on.)

(v) Bisimplicial and multisimplicial objects: A useful category in which we can take simplicial
objects is S itself, and the same is true for other categories of form Simp(A). For simplicity we
will start by looking at simplicial objects in S.

As a simplicial object in a category A is just a functor from ∆op to A, a simplicial object in
S is such a functor taking values that themselves are functors from ∆op to Sets. Another way to
look at these is a ‘functor of two variables’ using a categorical version of the way that a function
of two variables, f : X × Y → Z, can be thought of as a function f̃ : X → ZY from X to the set of
functions from Y to Z. Of course, f(x, y) = f̃(x)(y) and similarly for the functors. We thus have
a description of a simplicial object in S as corresponding to a functor X : ∆op ×∆op → Sets.

Definition: A bisimplicial set is a functor X : ∆op×∆op → Sets. . A morphism of bisimplicial
sets, f : X → Y is a natural transformation between the corresponding functors. More generally a
bisimplicial object in a category A is a functor X : ∆op×∆op → A, similarly for the corresponding
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morphisms. The corresponding categories will denoted BiS := BiSimp(Sets) and in general
BiSimp(A).

A simplicial set can be specified by giving sets Xn and face and degeneracy ‘operators’ between
them satisfying the simplicial idenities. A bisimplicial set is similarly specified by a bi-indexed
family of sets Xp,q and two families of simplicial operators. We may use the terms ‘horizontal’ and
‘vertical’ for these two families as that is how the corresponding diagrams are often drawn. For
instance, the bottom part of a bisimplicial set will look a bit like the following:

...

dv0
��

dv2
�� ��

...

dv0
��

dv2
�� ��

· · ·
dh0 //

dh2

//// X1,1

dh0 //

dh1

//

dv0
��

dv1
��

X0,1

dv0
��

dv1
��

· · ·
dh0 //

dh2

//// X1,0

dh0 //

dh1

// X0,0

(As usual in such diagrams, there is not really room to show the degeneracy maps and so these
are omitted from the picture.) In addition to the simplicial identities holding in each direction,
each horizontal face or degeneracy has to be a simplicial map between the vertical simplicial sets.
Practically this means that the diagram must commute.

We will later meet bisimplicial groups, and also briefly multisimplicial objects in which the
number of variables is not limited to two. For instance, the nerve of a simplicial group is most
naturally viewed as a bisimplicial set, and similarly the nerve of a bisimplicial group is a trisimplicial
set, that is a functor from ∆op×∆op×∆op to Sets. There are ways of passing between such things
as we will see later.

(vi) Cosimplicial things: At certain points in the development of cohomology and related areas
we will have need to talk of cosimplicial sets.

Definition: A cosimplicial set is a functor K : ∆ → Sets, and a morphism of such is a
natural transformation between the corresponding functors. The category of such will be denoted
CoSimp(Sets), and similarly for the obvious generalisations to other settings, namely cosimplicial
objects in a category A, being functors K : ∆ → A with corresponding morphisms forming a
category CoSimp(A).

This looks at one and the same time very similar and very different to simplicial objects.
Certainly analysis of, say, simplicial groups is much easier than that of cosimplicial groups, but, as
any functor, K : ∆ → A, gives uniquely a functor, Kop : ∆op → Aop, a cosimplicial object is also
a simplicial object in the opposite category. The problem, thus, is that often the opposite category
of a well known category, such as that of groups, is a lot less nice. Even the dual of Sets is not
that ‘well behaved’.

Conjugation: There is an ‘inversion’ operation on each finite ordinal in ∆, which forms reverse
the order on the ordinal, that is, it sends {0 < 1 < . . . < n} to {0 > 1 > . . . > n}. Of course the
resulting object is isomorphic to the original, but is not compatible with the face or degeneracy
maps. This operation induces an operation on simplicial objects, that we will call conjugation.
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Definition: Given a simplicial object, X in a category A, the conjugate simplicial object,
ConjX, is defined by

(ConjX)n = Xn,

di : (ConjX)n → (ConjX)n−1 = dn−i : Xn → Xn−1

for each 0 ≤ i ≤ n, and, similarly,

si : (ConjX)n → (ConjX)n+1 = sn−i : Xn → Xn+1.

Clearly X and ConjX are closely related. For instance, they have isomorphic geometric re-
alisation, isomorphic homotopy groups, ..., but the actual comparisons are quite difficult to give
because there are, in general, very few simplicial morphisms from X to ConjX.

Example: In some contexts, a situation naturally leads to a variant form of the nerve functor
being used. Suppose that A is a category. Our usual notation for an n-simplex in Ner(A would

be something like (a0
α1→ a1 → . . .

αn→ an), but sometimes the order of the terms is reversed as it

is more natural, in certain situations, to use (a′n
α′n→ a′n−1 →

α′1→ a′0). This might typically arise if
one has a right action of some group instead of the left actions that we will tend to meet more
often. It also occurs sometimes in the way that terms of the Bousfield-Kan form of the homotopy
colimit construction are presented, (see the comment on page ??). The link between the two forms
is a′i = an−i and α′i = αn−i+1. The face operators delete or compose in the conjugate way. Of
course, the nerve based on this notational form is the conjugate of the one we have defined earlier.
We will refer to it as the conjugate nerve of the category.

1.3.3 The Moore complex and the homotopy groups of a simplicial group

Given a simplicial group G, the Moore complex, (NG, ∂), of G is the chain complex defined by

NGn =

n⋂
i=1

Ker dni

with ∂n : NGn → NGn−1 induced from dn0 by restriction. (Note there is no assumption that the
NGn are Abelian.)

The nth homotopy group, πn(G), of G is the nth homology of the Moore complex of G, i.e.,

πn(G) ∼= Hn(NG, ∂),

=
(⋂n

i=0Ker d
n
i

)
/dn+1

0

(⋂n+1
i=1 Ker d

n+1
i

)
.

(You should check that ∂NGn+1 / NGn.)

The interpretation of NG and πn(G) is as follows:

for n = 1, g ∈ NG1,

1•
g // •∂g
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and g ∈ NG2 looks like

•
∂g

��1
111111

g

•
1
//

1

FF







•

and so on.
We note that g ∈ NG2 is in Ker ∂ if it looks like

•
1

��1
111111

g

•
1
//

1

FF







•

whilst it will give the trivial element of π2(G) if there is a 3-simplex x with g on its third face and
all other faces identity.

This simple interpretation of the elements of NG and πn(G) will ‘pay off’ later by aiding
interpretation of some of the elements in other situations. The homotopy groups we have introduced
above have been defined purely algebraically as homology of a related complex. Any simplicial
group gives us a base pointed simplicial set simply by forgetting the group structure and taking
the identity element as the base point. Any pointed simplicial set gives homotopy groups in two
different ways. There is an intrinsic way that is described in detail in, for instance, May’s book,
[97], but they can also be defined via a geometric realisation, which produces a space from the
simplicial set. These two ways always give the same answer, and in the case that we are looking
at of an underlying simplicial set of a simplicial group, this group coincides with that defined via
the Moore complex. (This is easily found in the literature if you want to check up on it, so we will
not repeat it here.)

n-equivalences and homotopy n-types Let n ≥ 0. A morphism, f : G → H, of simpli-
cial group(oid)s is an n-equivalence if the induced homomorphisms, πk(f) : πk(G) → πk(H) are
isomorphisms for all k < n.

Inverting the n-equivalences in Simp.Grps gives a category Hon(Simp.Grps) and two simplicial
groups have the same n-type if they are isomorphic in Hon(Simp.Grps).

Remark and warning: For a space or simplicial set K, πk(K) ∼= πk−1(G(K)), so these
simplicial group n-types correspond to restrictions on πk(K) for k ≤ n in the spatial context.

To consider the application of this to homotopical and homological algebra, we will also need
the following:

Definitions: (i) A simplicial group, G, is augmented by specifying a constant simplicial group
K(G−1, 0) and a surjective group homomorphism, f = d0

0 : G0 → G−1 with fd1
0 = fd1

1 : G1 → G−1.
An augmentation of the simplicial group G is then a map

G −→ K(G−1, 0),
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where K(G−1, 0) is the constant simplicial group with value G−1.

(ii) An augmented simplicial group, (G, f), is acyclic if the corresponding complex is acyclic,
i.e., Hn(NG) ∼= 1 for n > 0 and H0(NG) ∼= G−1.

Remarks: (i) The above notions are just particular instances of the general notion of an
augmented simplicial object in a category, and the corresponding idea of acyclic such things in
settings where the definition makes sense.

(ii) When considering augmented simplicial objects, we sometimes use the notation d0 or d0
0 for

the augmentation map as then the condition fd1
0 = fd1

1 becomes d0d0 = d0d1, which is a natural
extension of the simplicial identities.

1.3.4 Kan complexes and Kan fibrations

Within the category of simplicial sets, there is an important subcategory determined by those
objects that satisfy the Kan condition, that is the Kan complexes.

As before we set ∆[n] = ∆(−, [n]) ∈ S, then, for each i, 0 ≤ i ≤ n, we can form, within ∆[n],
a subsimplicial set, Λi[n], called the (n, i)-horn or (n, i)-box, by discarding the top dimensional n-
simplex (given by the identity map on [n]) and its ith face. We must also discard all the degeneracies
of those simplices.

By an (n, i)-horn or box in a simplicial set K, we mean a simplicial map f : Λi[n]→ K. Such
a simplicial map corresponds intuitively to a family of n simplices of dimension (n − 1), fitting
together to form a ‘funnel’ or ‘empty horn’ shaped subcomplex within K. The family is thus a
sequence, (k0, . . . , ki−1,−, ki+1, . . . , kn), with each k` ∈ Kn−1, satisfying d`kj = dj−1k`, for ` < j,
whenever both k` and kj are in the sequence. The idea is that a Kan fibration of simplicial sets
is a map in which the horns in the domain can be ‘filled’ if their images in the codomain can be.
More formally:

Definition: A map p : E → B is a Kan fibration if, for any n, i as above, given any (n, i)-horn
in E, specified by a map f1 : Λi[n]→ E, together with an n-simplex, f0 : ∆[n]→ B, such that

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
// B

commutes, then there is an f : ∆[n] → E such that pf = f0 and f.inc = f1, i.e., f lifts f0 and
extends f1.

We also say that p satisfies the Kan lifting condition if this is true.

Definition: A simplicial set, K, is a Kan complex if the unique map K → ∆[0] is a Kan
fibration. This is equivalent to saying that every horn in K has a filler, i.e., any f1 : Λi[n] → Y
extends to an f : ∆[n]→ Y .

Singular complexes, Sing(X), and the simplicial mapping spaces, Top(X,Y ), are always Kan
complexes.
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Lemma 1 The nerve of a category, C, is a Kan complex if and only if the category is a groupoid.
�

The proof is left to the reader.

This is very important as the filler structure involves compositions and inverses, so encodes the
algebraic structure of C. Later we will use this many times, sometimes explicitly, but often it will
be giving structure behind the scenes, for instance, internally within some other category.

There is a property of Kan fibrations, that is very useful, namely that the pullback of a Kan
fibration along a simplicial map is again a Kan fibration. More precisely:

Proposition 1 Let p : E → B be a Kan fibration, and let f : X → B be a simplicial map, and
form the pullback of p along f , written f∗(p) : Ef → X. This map is a Kan fibration.

Proof: (Just to help you think about f∗(p) : Ef → X more concretely, first note that f∗(p) :
Ef → X is only really defined up to isomorphism as it is given by a universal property in the usual
way, but we can find a particular ‘model’ of that isomorphism class of potential things as follows.
Look at the simplicial set X ×B E, where

(X ×B E)n = {(x, e) | x ∈ Xn, e ∈ En, f(x) = p(e)}

and where face and degeneracy maps are defined componentwise, so di(x, e) = (di(x), di(e)), etc.
The map, f∗(p) is then represented by the first projection. We will not use this model explicitly.
It is just there to help you if need be. Make sure you have looked up the universal property of
pullbacks as we will need it.)

We have a pullback square:

Ef
f ′ //

f∗(p)

��

E

p

��
X

f
// B.

Now assume we are given a diagram

Λi[n]
f1 //

inc
��

Ef

f∗(p)

��
∆[n]

f0
// X

and we seek a lift of f0 to Ef . Composing f0 and f on the base, and f1 and f ′ up top, and using the
Kan fibration property of p, we get a lift, g, of ff0 to E. (Draw the diagram.) Using the maps
f0 and g, you check that ff0 = pg, and the universal property of the original pullback square gives
you a map, h, say, to Ef . It now just remains to check that this is a lift of f0, and an extension of
f1, and checking that is left to you. �

This result is often stated by saying that the class of Kan fibrations is pullback stable.
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1.3.5 Simplicial groups are Kan

If G is a simplicial group, then its underlying simplicial set is a Kan complex. Moreover, given a
box in G, there is an algorithm for filling it using products of degeneracy elements. A form of this
algorithm is given below. More generally if f : G → H is an epimorphism of simplicial groups,
then the underlying map of simplicial sets is a Kan fibration.

The following description of the algorithm is adapted from May’s monograph, [97], page 67.

Proposition 2 Let G be a simplicial group, then every box has a filler.

Proof: Let (y0, . . . , yk−1,−, yk+1, . . . , yn) give a horn in Gn−1, so the yis are (n− 1) simplices that
fit together as if they were all but one, the kth one, of the faces of an n-simplex. There are three
cases:

(i) k = 0: Let wn = sn−1yn and then wi = wi+1(si−1diwi+1)−1si−1yi for i = n, . . . , 1, then w1

satisfies diw1 = yi, i 6= 0;

(ii) 0 < k < n: Let w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for i = 0, . . . , k − 1, then
take wn = wk−1(sn−1dnwk−1)−1sn−1yn, and finally a downwards induction given by wi =
wi+1(si−1diwi+1)−1si−1yi, for i = n, . . . , k + 1, then wk+1 gives diwk+1 = yi for i 6= k;

(iii) the third case, k = n uses w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for i = 0, . . . , n− 1, then
wn−1 satisfies diwn−1 = yi, i 6= n. �

Some discussion of how you can think of this algorithm can be found in [81].
(You could see if you can adapt the idea of this proof to prove the result mentioned immediately

before the statement, namely: if f : G → H is an epimorphism of simplicial groups, then the
underlying map of simplicial sets is a Kan fibration. What about the converse?)

Later on we will meet the simplicial mapping space, S(K,L), of simplicial maps from K to L.
It is defined by S(K,L)n = S(K ×∆[n], L), with the obvious induced maps. It is easy to see that
if L is a Kan complex, then so is S(K,L), for any K. (Try to prove it, but then look at May,
[97], to compare your attempt with his proof.) This result has a useful generalisation that we will
state as a lemma, but again will leave you to give or find a proof.

Lemma 2 If p : L→M is a Kan fibration, and K is an arbitrary simplicial set, then the induced
map, S(K, p) : S(K,L)→ S(K,M), is also one. �

(To give you a hint consider what a horn in S(K,L) looks like, and likewise what an n-simplex
in S(K,M) is. Why should you be able to put the information together to build an n-simplex in
S(K,L)? Look at low dimensional examples to build up some geometric intuition about what is
going on. That is important even if you later look up a proof as not every proof that you will find
gives the intuitive idea behind.)

1.3.6 T -complexes

There is quite a difference between the Kan complex structure of the nerve of a groupoid, G, and
that of a singular complex. In the first, if we are given a (n, i)-horn, then there is exactly one
n-simplex in Ner(G), since the (n, i)-horn has a chain of n-composable arrows of G in it (at least
unless (n, i) = (2, 0) or (2, 2), which cases are left to you) and that chain gives the required
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n-simplex. In other words, there is a ‘canonical’ filler for any horn. In Sing(X), there will usually
be many fillers. (Think about why this is true.)

One attempt to handle ‘canonical fillers’ interacts with a notion that we will encounter later on,
namely that of crossed complexes, for which see section 3.1. The resulting notion of a simplicial
T -complex is one sort of ‘Kan complex with canonical fillers’ and various of the intuitions and
arguments that this introduces will recur frequently in the following chapters. It assumes there is
always a unique special filler. There may be other non-special ones, but that is not controlled in
the process, as we will see. Simplicial T -complexes were introduced by Dakin, [54]:

Definition: A simplicial T -complex consists of a pair (K,T ), where K is a simplicial set and
T = (Tn)n≥1 is a graded subset of K with Tn ⊆ Kn. Elements of T are called thin. The thin
structure satisfies the following axioms:

T .1 Every degenerate element is thin.

T .2 Every box in K has a unique thin filler.

T .3 A thin filler of a thin box also has its last face thin.

Example: The nerve of a groupoid has a T -complex structure in which each simplex of dimen-
sion greater than or equal to 2 is thin. Our earlier comments give the proof. Conversely, if (K,T )
is a T -complex with Tn = Kn for all n ≥ 2, then K is the nerve of a groupoid with set of objects
K0 and set of arrows, K1. (It is left to you to see how to compose arrows, to prove that it is an
associative composition, and that there are identities at all objects.)

A box or horn is, of course, as in section 1.3.4, a collection of n-simplices that fits together like
the collection of all but one faces of an (n+ 1)-simplex. The collection of such n-boxes with given
face missing can be formulated in terms of a pullback and hence axioms T2 and T3 can be encoded
in a form suitable for adapting to other contexts. Similar ideas are used by Duskin, [56], and
Nan-Tie, [103, 104], and we will have occasion to refer back to these later. We will need to adapt
those ideas initially to T -complexes within the setting of groups (group T -complexes as below) but
later we may need them in various other settings. Group T -complexes were briefly considered by
Ashley, [6], but their main theory has been clarified and extended by Carrasco, [37], and Cegarra
and Carrasco, [38], using ideas that will be discussed briefly later.

1.3.7 Group T-complexes

Definition: A group T -complex is “a T -complex (G,T ) in which G is a simplicial group and T is
a graded subgroup of G”, (Ashley, [6]).

Ashley proved a series of results that gave a neat alternative formulation of this concept. We
note the following observations:

Lemma 3 Let D = (Dn)n≥1 be the graded subgroup of G generated by the images of the degeneracy
maps, si : Gn → Gn+1, for all i and n, then any box in G has a standard filler in D.
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Proof: In fact, the algorithmic formulae used when proving that any simplicial group is a Kan
complex (cf., Proposition 2) give a filler defined as a product of degenerate copies of the faces of
the box. �

Proposition 3 If (G,T ) is a group T -complex then T = D.

Proof: To see this, we note that axiom T1 implies that D ⊆ T . Conversely if t ∈ Tn, then it fills
the box made up of ( , d1t, . . . , dnt). This, in turn, has a filler, d, in D, but, as this filler is also
thin, it must be that t = d, since thin fillers are uniquely determined (T2). �

This is neat since it says there is essentially at most one group T -complex structure on any
given simplicial group. The next results says when such a structure does exist.

Theorem 1 (Ashley, [6]) If G is a simplicial group, then (G,D) is a group T -complex if and only
if NG ∩D is the trivial graded subgroup.

Proof: One way around, this is nearly trivial. If (G,D) is a group T -complex and x ∈ NGn, then
x fills a box ( , 1, . . . , 1), so if x ∈ NGn ∩ Dn, x must itself be the thin filler, however 1 is also a
thin filler for this box, so x = 1 as required.

Conversely if NG∩D = {1}, then we must check T2 and T3, T1 being trivial. As any box has
a standard filler in D, we only have to check uniqueness, but if x and y are in Dn, and both fill the
same box (with the kth face missing) then z = xy−1 fills a box with 1s on all faces (and the kth

face missing).
If k = 0, then as z ∈ NGn ∩Dn, we have z = 1 and x and y are equal. If k > 0, assume that

if ` < k and z ∈ Dn ∩
⋂
i 6=`Ker di then z = 1, (i.e, that we have uniqueness up to at least the

(k − 1)st case). Consider w = zsk−1dkz
−1. This is still in Dn and diw = 1 unless i = k − 1, hence

by assumption w = 1. Of course, this implies that z = sk−1dkz, but then dk−1z = dkz. We know
that dk−1z = 1, so dkz = 1 and z = 1, i.e., x = y and we have uniqueness at the next stage.

To verify T3, assume that x ∈ Dn+1 and each dix ∈ Dn for i 6= k, then we can assume that
k = 0, since otherwise we can skew the situation around as before to get that to be true, verify it
in that case and ‘skew’ it back again later. Suppose therefore that dix ∈ Dn for all 0 < i < n. As
x must be the degenerate filler given by the standard method, we can calculate x as follows: let
wn = sn−1dnx, wi = wi+1(si−1diwi+1)−1si−1yi for i = 1, then x = w1. We can therefore check that
d0x ∈ Dn as required. �

Remark: Ashley, [6], in fact assumes a seemingly stronger conclusion, namely that Dn ∩⋃n
`=0(

⋂
i 6=`Ker di) = 1. The reduction to the single case is noted by Carrasco, [37].

Thus a group T -complex is a simplicial group in which the Moore complex contains no non-
trivial product of degenerate elements.

It is often useful to have a ‘dimensionwise’ terminology in the following sense. We could say that
a group T -complex satisfies the thin filler condition or simply, the T -condition, in all dimensions.
That suggests that we extract that condition ‘dimensionwise’ as follows:

Definition: A simplicial group G satisfies the thin filler condition in dimension n if NGn∩Dn

is trivial. We may abbreviate that to T -condition in dimension n.
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This terminology lends itself well to such variants as ‘G satisfies the thin filler condition in
dimensions greater that k’ meaning that NGn ∩Dn is trivial for all n > k, and so on.

It is left as an exercise to prove that any simplicial Abelian group is a group T -complex. (At
this stage, this is moderately challenging, and it may help to take a brief look at the later section
on Conduché’s decomposition and the Dold-Kan theorem.)
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Chapter 2

Crossed modules - definitions,
examples and applications

We will give these for groups, although there are analogues for many other algebraic settings.

2.1 Crossed modules

Definition: A crossed module, (C,G, δ), consists of groups C and G with a left action of G on
C, written (g, c) → gc for g ∈ G, c ∈ C, and a group homomorphism δ : C → G satisfying the
following conditions:
CM1) for all c ∈ C and g ∈ G,

δ(gc) = gδ(c)g−1,

CM2) for all c1, c2 ∈ C,
δ(c2)c1 = c2c1c

−1
2 .

(CM2 is called the Peiffer identity.)

If (C,G, δ) and (C ′, G′, δ′) are crossed modules, a morphism, (µ, η) : (C,G, δ) → (C ′, G′, δ′),
of crossed modules consists of group homomorphisms µ : C → C ′ and η : G→ G′ such that

(i) δ′µ = ηδ and (ii) µ(gc) = η(g)µ(c) for all c ∈ C, g ∈ G.
Crossed modules and their morphisms form a category, of course. It will usually be denoted

CMod.
There is, for a fixed group G, a subcategory CModG of CMod, which has, as objects, those

crossed modules with G as the “base”, i.e., all (C,G, δ) for this fixed G, and having as morphisms
from (C,G, δ) to (C ′, G, δ′) just those (µ, η) in CMod in which η : G → G is the identity homo-
morphism on G.

Several well known situations give rise to crossed modules. The verification will be left to you.

2.1.1 Algebraic examples of crossed modules

(i) Let H be a normal subgroup of a group G with i : H → G the inclusion, then we will
say (H,G, i) is a normal subgroup pair. In this case, of course, G acts on the left of H by

35
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conjugation and the inclusion homomorphism i makes (H,G, i) into a crossed module, an
‘inclusion crossed modules’. Conversely it is an easy exercise to prove

Lemma 4 If (C,G, ∂) is a crossed module, ∂C is a normal subgroup of G. �

(ii) Suppose G is a group and M is a left G-module; let 0 : M → G be the trivial map sending
everything in M to the identity element of G, then (M,G, 0) is a crossed module.

Again conversely:

Lemma 5 If (C,G, ∂) is a crossed module, K = Ker ∂ is central in C and inherits a natural
G-module structure from the G-action on C. Moreover, N = ∂C acts trivially on K, so K
has a natural G/N -module structure. �

Again the proof is left as an exercise.

As these two examples suggest, general crossed modules lie between the two extremes of normal
subgroups and modules, in some sense, just as groupoids lay between equivalence relations
and G-sets. Their structure bears a certain resemblance to both - they are “external” normal
subgroups, but also are “twisted” modules.

(iii) Let G be a group, then, as usual, let Aut(G), denote the group of automorphisms of G.
Conjugation gives a homomorphism

ι : G→ Aut(G).

Of course, Aut(G) acts on G in the obvious way and ι is a crossed module. We will need this
later so will give it its own name, the automorphism crossed module of the group, G and its
own notation: Aut(G).

More generally if L is some type of algebra then U(L) → Aut(L) will be a crossed module,
where U(L) denotes the units of L and the morphism send a unit to the automorphism given
by conjugation by it.

This class of example has a very nice property with respect to general crossed modules.
For a general crossed module, (C,P, ∂), we have an action of P on C, hence a morphism,
α : P → Aut(C), so that α(p)(c) = pc. There is clearly a square

C
= //

∂

��

C

ι
��

P α
// Aut(C)

and we can ask if this gives a morphism of crossed modules. ‘Clearly’ it should. The re-
quirements are that the square commutes and that the actions are compatible in the obvious
sense, (recall page 35). To see that the square commutes, we just note that, given c ∈ C, ∂c
acts on an x ∈ C, by conjugation by c: ∂cx = c.x.c−1 = ι(c)(x), whilst to check that the
actions match correctly remember that α(p)(c) = px by definition, so we do have a morphism
of crossed modules as expected.
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(iv) We suppose given a morphism

θ : M → N

of left G-modules and form the semi-direct product N o G. This group we make act on M
via the projection from N oG to G.

We define a morphism

∂ : M → N oG

by ∂(m) = (θ(m), 1), where 1 denotes the identity element of G, then (M,N o G, ∂) is a
crossed module. In particular, if A and B are Abelian groups, and B is considered to act
trivially on A, then any homomorphism, A→ B is a crossed module.

(v) Suppose that we have a crossed module, C = (C,G, δ), and a group homomorphism ϕ : H →
G, then we can form the ‘pullback group’ H ×GC = {(h, c) | ϕ(h) = δc}, which is a subgroup
of the product H × C. There is a group homomorphism, δ′ : H ×G C → H, namely the
restriction of the first projection morphism of the product, (so δ′(h, c) = h). You are left
to construct an action of H on this group, H ×G C such that ϕ∗(C) := (H ×G C,H, δ′) is a
crossed module, and also such that the pair of maps ϕ and the second projection H×GC → C
give a morphism of crossed modules.

Definition: The crossed module, ϕ∗(C), thus defined, is called the pullback crossed module
of C along ϕ

(vi) As a last algebraic example for the moment, let

1→ K
a→ E

b→ G→ 1

be an extension of groups with K a central subgroup of E, i.e., a central extension of G by
K. For each g ∈ G, pick an element s(g) ∈ b−1(g) ⊆ E. Define an action of G on E by: if
x ∈ E, g ∈ G, then

gx = s(g)xs(g)−1.

This is well defined, since if s(g), s′(g) are two choices, s(g) = ks′(g) for some k ∈ K, and
K is central. (This also shows that this is an action.) The structure (E,G, b) is a crossed
module.

A particular important case is: for R a ring, let E(R) be the group of elementary matrices of
R, E(R) ⊆ G`(R) and St(R), the corresponding Steinberg group with b : St(R)→ E(R), the
natural morphism, (see later, page 99, or [99], for the definition). This, then, gives a central
extension

1→ K2(R)→ St(R)→ E(R)→ 1

and thus a crossed module. In fact, more generally,

b : St(R)→ G`(R)

is a crossed module. The group, G`(R)/Im(b), is K1(R), the first algebraic K-group of the
ring.
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2.1.2 Topological Examples

In topology there are several examples that deserve looking at in detail as they do relate to
aspects of the above algebraic cases. They require slightly more topological knowledge than
has been assumed so far.

(vii) Let X be a pointed space, with x0 ∈ X as its base point, and A a subspace with x0 ∈ A.
Recall that the second relative homotopy group, π2(X,A, x0), consists of relative homotopy
classes of continuous maps

f : (I2, ∂I2, J)→ (X,A, x0)

where ∂I2 is the boundary of I2, the square, [0, 1]× [0, 1], and J = {0, 1}× [0, 1]∪ [0, 1]×{0}.
Schematically f maps the square as:

x0x0 X

x0

A

so the top of the boundary goes to A, the rest to x0 and the whole thing to X. The relative
homotopies considered then deform the maps in such a way as to preserve such structure,
so intermediate mappings also send J to x0, etc. Restriction of such an f to the top of the
boundary clearly gives a homomorphism

∂ : π2(X,A, x0)→ π1(A, x0)

to the fundamental group of A, based at x0. There is also an action of π1(A, x0) on π2(X,A, x0)
given by rescaling the ‘square’ given by

a

�
�
��

@
@
@@

f

a−1

where f is partially ‘enveloped’ in a region on which the mapping is behaving like a.

Of course, this gives a crossed module

π2(X,A, x0)→ π1(A, x0).

A direct proof is quite easy to give. One can be found in Hilton’s book, [73] or in Brown-
Higgins-Sivera, [31]. Alternatively one can use the argument in the next example.
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(viii) Suppose F
i→ E

p→ B is a fibration sequence of pointed spaces. Thus p is a fibration,
F = p−1(b0), where b0 is the basepoint of B. The fibre F is pointed at f0, say, and f0 is taken
as the basepoint of E as well.

There is an induced map on fundamental groups

π1(F )
π1(i)−→ π1(E)

and if a is a loop in E based at f0, and b a loop in F based at f0, then the composite path
corresponding to aba−1 is homotopic to one wholly within F . To see this, note that p(aba−1)
is null homotopic. Pick a homotopy in B between it and the constant map, then lift that
homotopy back up to E to one starting at aba−1. This homotopy is the required one and its
other end gives a well defined element ab ∈ π1(F ) (abusing notation by confusing paths and
their homotopy classes). With this action (π1(F ), π(E), π1(i)) is a crossed module. This will
not be proved here, but is not that difficult. Links with previous examples are strong.

If we are in the context of the above example, consider the inclusion map, f of a subspace A
into a space X (both pointed at x0 ∈ A ⊂ X). Form the corresponding fibration,

if : Mf → X,

by forming the pullback

Mf πf //

jf

��

XI

e0

��
A

f
// X

so Mf consists of pairs, (a, λ), where a ∈ A and λ is a path from f(a) to some point λ(1). Set
if = e1π

f , so if (a, λ) = λ(1). It is standard that if is a fibration and its fibre is the subspace
Fh(f) = {(a, λ) | λ(1) = x0}, often called the homotopy fibre of f . The base point of Fh(f) is
taken to be the constant path at x0, (x0, cx0).

If we note that
π1(Fh(f)) ∼= π2(X,A, x0)

π1(Mf ) ∼= π1(A, x0)

(even down to the descriptions of the actions, etc.), the link with the previous example becomes
clear, and thus furnishes another proof of the statement there.

(ix) The link between fibrations and crossed modules can also be seen in the category of simplicial
groups. A morphism f : G→ H of simplicial groups is a fibration if and only if each fn is an
epimorphism. This means that a fibration is determined by the fibre over the identity which
is, of course, the kernel of f . The (G,W )-links between simplicial groups and simplicial sets
mean that the analogue of π1 is π0. Thus the fibration f corresponds to

Ker f
C→ G

and each level of this is a crossed module by our earlier observations. Taking π0, it is easy to
check that

π0(Ker f)→ π0(G)
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is a crossed module. In fact any crossed module is isomorphic to one of this form. (Proof left
to the reader.)

If M = (C,G, ∂) is a crossed module, then we sometimes write π0(M) := G/∂C, π1(M) := Ker ∂,
and then have a 4-term exact sequence:

0→ π1(M)→ C
∂→ G→ π0(M)→ 1.

In topological situations when M provides a model for (part of) the homotopy type of a space X
or a pair (X,A), then typically π1(M) ∼= π2(X), π0(M) ∼= π1(X).

Mac Lane and Whitehead, [95], showed that crossed modules give algebraic models for all
homotopy 2-types of connected spaces. We will visit this result in more detail later, but loosely
a 2-equivalence between spaces is a continuous map that induces isomorphisms on π1 and π2, the
first two homotopy groups. Two spaces have the same 2-type if there is a zig-zag of 2-equivalences
joining them.

2.1.3 Restriction along a homomorphism ϕ/ ‘Change of base’

Given a crossed module, (C,H, ∂), over H and a homomorphism ϕ : G → H, we can form the
pullback:

D

∂′

��

ψ // C

∂
��

G ϕ
// H

in Grps. Clearly the universal property of pullbacks gives a good universal property for this, namely
that any morphism (ϕ′, ϕ) : (C ′, G, δ)→ (C,H, ∂) factors uniquely through (ψ,ϕ) and a morphism
in CModG from (C ′, G, δ) to (D,G, ∂′). Of course this statement depends on verification that
(D,G, ∂′) is a crossed module and that the resulting maps are morphisms of crossed modules, but
this is routine, and will be left as an exercise. (You may need to recall that D can be realised,
up to isomorphism, as G×H C = {(g, c) | ϕ(g) = ∂c}. It is for you to see what the action is.)

This construction also behaves nicely on morphisms of crossed modules over H and yields a
functor,

ϕ∗ : CModH → CModG,

which will be called restriction along ϕ.

We next turn to the use of crossed modules in combinatorial group theory.

2.2 Group presentations, identities and 2-syzygies

2.2.1 Presentations and Identities

(cf. Brown-Huebschmann, [32]) We consider a presentation, P = (X : R), of a group G. The
elements of X are called generators and those of R relators. We then have a short exact sequence,

1→ N → F → G→ 1,
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where F = F (X), the free group on the set X, R is a subset of F and N = N(R) is the normal
closure in F of the set R.

A standard if somewhat trivial example is given by the standard presentation of a group, G.
We take X = {xg | g ∈ G, g 6= 1}, to be a set in bijective correspondence with the underlying set
of G. (You can take X equal to that set if you like, but sometimes it is better to have a distinct
set, for instance, it make for an easier notation for the description of certain morphisms.) The set
of relations will be R = {xg.xh = xgh | g, h ∈ G}.

The group F acts on N by conjugation: uc = ucu−1, c ∈ N, u ∈ F and the elements of N are
words in the conjugates of the elements of R:

c = u1(rε11 )u2(rε22 ) . . . un(rεnn )

where each εi is +1 or − 1. One also says such elements are consequences of R. Heuristically
an identity among the relations of P is such an element c which equals 1. The problem of what
this means is analogous to that of working with a relation in R. For example, in the presentation
(a : a3) of C3, the cyclic group of order 3, if a is thought of as being an element of C3, then a3 = 1,
so why is this different from the situation with the ‘presentation’, (a : a = 1)? To get around that
difficulty the free group on the generators F (X) was introduced and, of course, in F ({a}), a3 is
not 1. A similar device, namely free crossed modules on the presentation will be introduced in a
moment to handle the identities. Before that consider some examples which indicate that identities
exist even in some quite common-or-garden cases.

Example 1: Suppose r ∈ R, but it is a power of some element s ∈ F , i.e. r = sm. Of course,
rs = sr and

srr−1 = 1

so sr.r−1 is an identity. In fact, there will be a unique z ∈ F with r = zq, q maximal with this
property. This z is called the root of r and if q > 1, r is called a proper power.

Example 2: Consider one of the standard presentations of S3, (a, b : a3, b2, (ab)2). Write
r = a3, s = b2, t = (ab)2. Here the presentation leads to F , free of rank 2, but N(R) ⊂ F , so it
must be free as well, by the Nielsen-Schreier theorem. Its rank will be 7, given by the Schreier index
formula or, geometrically, it will be the fundamental group of the Cayley graph of the presentation.
This group is free on generators corresponding to edges outside a maximal tree as in the following
diagram:

1 - a
J
J
J
J
J
J
JJ]

a2















�

b





�

�

ba
J
J
Ĵ
ab-

�

�
�

M ^ 1 - a

a2















�

b





�

�

ba

ab-
θ1 θ2 θ3

θ6 θ7

θ4 θ5

The Cayley graph of S3 and a maximal tree in it.
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The set of normal generators of N(R) has 3 elements; N(R) is free on 7 elements (corresponding
to the edges not in the tree), but is specified as consisting of products of conjugates of r, s and t,
and there are infinitely many of these. Clearly there must be some slight redundancy, i.e., there
must be some identities among the relations!

A path around the outer triangle corresponds to the relation r; each other region corresponds to
a conjugate of one of r, s or t. (It may help in what follows to think of the graph being embedded
on a 2-sphere, so ‘outer’ and ‘outside’ mean ‘round the back face.) Consider a loop around a region.
Pick a path to a start vertex of the loop, starting at 1. For instance the path that leaves 1 and
goes along a, b and then goes around aaa before returning by b−1a−1 gives abrb−1a−1. Now the
path around the outside can be written as a product of paths around the inner parts of the graph,
e.g. (abab)b−1a−1b−1(bb)(b−1a−1b−1a−1) . . . and so on. Thus r can be written in a non-trivial way
as a product of conjugates of r, s and t. (An explicit identity constructed like this is given in [32].)

Example 3: In a presentation of the free Abelian group on 3 generators, one would expect the
commutators, [x, y], [x, z] and [y, z]. The well-known identity, usually called the Jacobi identity,
expands out to give an identity among these relations (again see [32], p.154 or Loday, [90].)

2.2.2 Free crossed modules and identities

The idea that an identity is an equation in conjugates of relations leads one to consider formal
conjugates of symbols that label relations. Abstracting this a bit, suppose G is a group and
f : Y → G, a function ‘labelling’ the elements of some subset of G. To form a conjugate, you need
a thing being conjugated and an element ‘doing’ the conjugating, so form pairs (p, y), p ∈ G, y ∈ Y ,
to be thought of as py, the formal conjugate of y by p. Consequences are words in conjugates of
relations, formal consequences are elements of F (G × Y ). There is a function extending f from
G× Y to G given by

f̄(p, y) = pf(y)p−1,

converting a formal conjugate to an actual one and this extends further to a group homomorphism

ϕ : F (G× Y )→ G

defined to be f̄ on the generators. The group G acts on the left on G × Y by multiplication:
p.(p′, y) = (pp′, y). This extends to a group action of G on F (G × Y ). For this action, ϕ is
G-equivariant if G is given its usual G-group structure by conjugations / inner automorphisms.
Naively identities are the elements in the kernel of this, but there are some elements in that kernel
that are there regardless of the form of function f . In particular, suppose that g1, g2 ∈ G and
y1, y2 ∈ Y and look at

(g1, y1)(g2, y2)(g1, y1)−1((g1f(y1)g−1
1 )g2, y2)−1.

Such an element is always annihilated by ϕ. The normal subgroup generated by such elements is
called the Peiffer subgroup. We divide out by it to obtain a quotient group. This is the construction
of the free crossed module on the function f . If f is, as in our initial motivation, the inclusion of
a set of relators into the free group on the generators we call the result the free crossed module on
the presentation P and denote it by C(P).

We can now formally define the module of identities of a presentation P = (X : R). We form
the free crossed module on R → F (X), which we will denote by ∂ : C(P) → F (X). The module
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of identities of P is Ker ∂. By construction, the group presented by P is G ∼= F (X)/Im∂, where
Im∂ is just the normal closure of the set, R, of relations and we know that Ker ∂ is a G-module.
We will usually denote the module of identities by πP .

We can get to C(P) in another way. Construct a space from the combinatorial information
in C(P) as follows. Take a bunch of circles labelled by the elements of X; call it K(P)1, it is
the 1-skeleton of the space we want. We have π1(K(P)1

∼= F (X). Each relator r ∈ R is a word
in X so gives us a loop in K(P)1, following around the circles labelled by the various generators

making up r. This loop gives a map S1 fr→ K(P)1. For each such r we use fr to glue a 2-
dimensional disc e2

r to K(P)1 yielding the space K(P). The crossed module C(P) is isomorphic to

π2(K(P),K(P)1)
∂→ π1(K(P)1.

The main problem is how to calculate πP or equivalently π2(K(P)). One approach is via an
associated chain complex. This can be viewed as the chains on the universal cover of K(P), but
can also be defined purely algebraically, for which see Brown-Huebschmann, [32], or Loday, [90].
That algebraic - homological approach leads to ‘homological syzygies’. For the moment we will
concentrate on:

2.3 Cohomology, crossed extensions and algebraic 2-types

2.3.1 Cohomology and extensions, continued

Suppose we have any group extension

E : 1→ K → E
p→ G→ 1,

with K Abelian, but not necessarily central. We can look at various possibilities.
If we can split p, by a homomorphism s : G→ E, with ps = IdG, then, of course, E ∼= K oG

by the isomorphisms,
e −→ (esp(e)−1, p(e)),

ks(g)←− (k, g),

which are compatible with the projections etc., so there is an equivalence of extensions

1 // K //

=

��

E //

∼=
��

G //

=

��

1

1 // K // K oG // G // 1.

Our convention for multiplication in K oG will be

(k, g)(k′, g′) = (kgk′, gg′).

But what if p does not split. We can build a (small) category of extensions Ext(G,K) with objects
such as E above and in which a morphism from E to E ′ is a diagram

1 // K //

=

��

E //

α

��

G //

=

��

1

1 // K // E′ // G // 1.
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By the 5-lemma, α will be an isomorphism, so Ext(G,K) is a groupoid.
In E , the epimorphism p is usually not splittable, but as a function between sets, it is onto so we

can pick an element in each p−1(g) to get a transversal (or set of coset representatives), s : G→ E.
We get a comparison pairing / obstruction map or ‘factor set’ :

f : G×G→ E

f(g1, g2) = s(g1)s(g2)s(g1g2)−1,

which will be trivial, (i.e., f(g1, g2) = 1 for all g1, g2 ∈ G) exactly if s splits p, i.e., if s is a
homomorphism. This construction assumes that we know the multiplication in E, otherwise we
cannot form this product! On the other hand given this ‘f ’, we can work out the multiplication.
As a set, E will be the product K ×G, identified with it by the same formulae as in the split case,
noting that pf(g1, g2) = 1, so ‘really’ we should think of f as ending up in the subgroup K, then
we have

(k1, g1)(k2, g2) = (k1
s(g1)k2f(g1, g2), g1g2).

The product is twisted by the pairing f . Of course, we need this multiplication to be associative
and, to ensure that, f must satisfy a cocycle condition:

s(g1)f(g2, g3)f(g1, g2g3) = f(g1, g2)f(g1g2, g3).

This is a well known formula from group cohomology, more so if written additively:

s(g1)f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0.

Here we actually have various parts of the nerve of G involved in the formula. The group G ‘is’ a
small category (groupoid with one object), which we will, for the moment, denote G. The triple
σ = (g1, g2, g3) is a 3-simplex in Ner(G) and its faces are

d0σ = (g2, g3),

d1σ = (g1g2, g3),

d2σ = (g1, g2g3),

d3σ = (g1, g2).

This is all very classical. We can use it in the usual way to link π0(Ext(G,K)) with H2(G,K) and
so is the ‘modern’ version of Schreier’s theory of group extensions, at least in the case that K is
Abelian.

For a long time there was no obvious way to look at the elements of H3(G,K) in a similar
way. In Mac Lane’s homology book, [92], you can find a discussion from the classical viewpoint. In
Brown’s [24], the link with crossed modules is sketched although no references for the details are
given, for which see Mac Lane’s [94].

If we have a crossed module C
∂→ P , then we saw that Ker ∂ is central in C and is a P/∂C-

module. We thus have a ‘crossed 2-fold extension’:

K
i→ C

∂→ P
p→ G,

where K = Ker ∂ and G = P/∂C. (We will write N = ∂C.)
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Repeat the same process as before for the extension

N → P → G,

but take extra care as N is usually not Abelian. Pick a transversal s : G→ P giving f : G×G→ N
as before (even with the same formula). Next look at

K
i→ C → N,

and lift f to C via a choice of F (g1, g2) ∈ C with image f(g1, g2) in N .
The pairing f satisfied the cocycle condition, but we have no means of ensuring that F will do

so, i.e. there will be, for each triple (g1, g2, g3), an element c(g1, g2, g3) ∈ C such that

s(g1)F (g2, g3)F (g1, g2g3) = i(c(g1, g2, g3))F (g1, g2)F (g1g2, g3),

and some of these c(g1, g2, g3) may be non-trivial. The c(g1, g2, g3) will satisfy a cocycle condition
correspond to a 4-simplex in Ner(G), and one can reconstruct the crossed 2-fold extension up to
equivalence from F and c. Here ‘equivalence’ is generated by maps of ‘crossed’ exact sequences:

1 // K //

=

��

C //

��

P //

��

G //

=

��

1

1 // K // C ′ // P ′ // G // 1,

but these morphisms need not be isomorphisms. Of course, this identifies H3(G,K) with π0 of the
resulting category.

What about H4(G,K)? Yes, something similar works, but we do not have the machinery to do
it here, yet.

2.3.2 Not really an aside!

Suppose we start with a crossed module C = (C,P, ∂). We can build an internal category, X (C), in
Grps from it. The group of objects of X (C) will be P and the group of arrows C o P . The source
map

s : C o P → P is s(c, p) = p,

the target
t : C o P → P is t(c, p) = ∂c.p.

(That looks a bit strange. That sort of construction usually does not work, multiplying two
homomorphisms together is a recipe for trouble! - but it does work here:

t((c1, p1).(c2, p2)) = t(c1
p1c2, p1p2)

= ∂(c1
p1c2).p1p2,

whilst t(c1, p1).t(c2, p2) = ∂c1.p1.∂c2.p2, but remember ∂(c1
p1c2) = ∂c1.p1.∂c2.p

−1
1 , so they are

equal.)
The identity morphism is i(p) = (1, p), but what about the composition. Here it helps to draw

a diagram. Suppose (c1, p1) ∈ C o P , then it is an arrow

p1
(c1,p1)−→ ∂c1.p1,
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and we can only compose it with (c2, p2) if p2 = ∂c1.p1. This gives

p1
(c1,p1)−→ ∂c1.p1

(c2,∂c1.p1)−→ ∂c2∂c1.p1.

The obvious candidate for the composite arrow is (c2c1, p1) and it works!
In fact, X (C) is an internal groupoid as (c−1

1 , ∂c1.p1) is an inverse for (c1, p1).
Now if we started with an internal category

G1

s //

t
// G0

i
oo

,

etc., then set P = G0 and C = Ker s with ∂ = t |C to get a crossed module.

Theorem 2 (Brown-Spencer,[34]) The category of crossed modules is equivalent to that of internal
categories in Grps. �

You have, almost, seen the proof. As beginning students of algebra, you learnt that equivalence
relations on groups need to be congruence relations for quotients to work well and that congru-
ence relations ‘are the same as’ normal subgroups. That is the essence of the proof needed here,
but we have groupoids rather than equivalence relations and crossed modules rather than normal
subgroups.

Of course, any morphism of crossed modules has to induce an internal functor between the
corresponding internal categories and vice versa. That is a good exercise for you to check that
you have understood the link that the Brown-Spencer theorem gives.

This is a good place to mention 2-groups. The notion of 2-category is one that should be fairly
clear even if you have not met it before. For instance, the category of small categories, functors
and natural transformations is a 2-category. Between each pair of objects, we have not just a set
of functors as morphisms but a small category of them with the natural transformations between
them as the arrows in this second level of structure. The notion of 2-category is abstracted from
this. We will not give a formal definition here (but suggest that you look one up if you have not
met the idea before). A 2-category thus has objects, arrows or morphisms (or sometimes ‘1-cells’)
between them and then some 2-cells (sometimes called ‘2-arrows’ or ‘2-morphisms’) between them.

Definition: A 2-groupoid is a 2-category in which all 1-cells and 2-cells are invertible.
If the 2-groupoid has just one object then we call it a 2-group.

Of course, there are also 2-functors between 2-categories and so, in particular, between 2-groups.
Again this is for you to formulate, looking up relevant definitions, etc.

Internal categories in Grps are really exactly the same as 2-groups. The Brown-Spencer theorem
thus constructs the associated 2-group of a crossed module. The fact that the composition in the
internal category must be a group homomorphism implies that the ‘interchange law ’ must hold.
This equation is in fact equivalent via the Brown-Spencer result to the Peiffer identity. (It is left
to you to find out about the interchange law and to check that it is the Peiffer axiom in disguise.
We will see it many times later on.)

Here would be a good place to mention that an internal monoid in Grps is just an Abelian group.
The argument is well known and is usually known by the name of the Eckmann-Hilton argument.



2.3. COHOMOLOGY, CROSSED EXTENSIONS AND ALGEBRAIC 2-TYPES 47

This starts by looking at the interchange law, which states that the monoid multiplication must
be group homomorphism. From this it derives that the monoid identity must also be the group
identity and that the two compositions must coincide. It is then easy to show that the group is
Abelian.

2.3.3 Perhaps a bit more of an aside ... for the moment!

This is quite a good place to mention the groupoid based theory of all this. The resulting objects
look like abstract 2-categories and are 2-groupoids. We have a set of objects, K0, a set of arrows,
K1, depicted x

p−→ y, and a set of two cells

x

p

$$

∂c.p

::
�� ��
��(c,p) y .

In our previous diagrams, as all the elements of P started and ended at the same single object, we
could shift dimension down one step; our old objects are now arrows and our old arrows are 2-cells.
We will return to this later.

The important idea to note here is that a ‘higher dimensional category’ has a link with an
algebraic object. The 2-group(oid) provides a useful way of interpreting the structure of the crossed
module and indicates possible ways towards similar applications and interpretations elsewhere. For
instance, a presentation of a monoid leads more naturally to a 2-category than to any analogue of
a crossed module, since kernels are less easy to handle than congruences in Mon.

There are other important interpretations of this. Categories such as that of vector spaces,
Abelian groups or modules over a ring, have an additional structure coming from the tensor product,
A ⊗ B. They are monoidal categories. One can ‘multiply’ objects together and this is linked to a
related multiplication on morphisms between the objects. In many of the important examples the
multiplication is not strictly associative, so for instant, if A,B,C are objects there is an isomorphism
between (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C), but this isomorphism is most definitely not the identity
as the two objects are constructed in different ways. A similar effect happens in the category of
sets with ordinary Cartesian product. The isomorphism is there because of universal properties,
but it is again not the identity. It satisfies some coherence conditions, (a cocycle condition in
disguise), relating to associativity of four fold tensors and the associahedron that we gave earlier,
is a corresponding diagram for the five fold tensors. (Yes, there is a strong link, but that is not for
these notes!) Our 2-group(oid) is the ‘suspension’ or ‘categorification’ of a similar structure. We
can multiply objects and ‘arrows’ and the result is a strict ‘gr-groupoid’, or ‘categorical group’, i.e.
a strict monoidal category with inverses. This is vague here, but will gradually be explored later
on. If you want to explore the ideas further now, look at Baez and Dolan, [7].

(At this point, you do not need to know the definition of a monoidal category, but remember
to look it up in the not too distance future, if you have not met it before, as later on the
insights that an understanding of that notion gives you, will be very useful. It can be found in
many places in the literature, and on the internet. The approach that you will get on best with
depends on your background and your likes and dislikes mathematically, so we will not give one
here.)
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Just as associativity in a monoid is replaced by a ‘lax’ associativity ‘up to coherent isomorphisms’
in the above, gr-groupoids are ‘lax’ forms of internal categories in groups and thus indicate the
presence of a crossed module-like structure, albeit in a weakened or ‘laxified’ form. Later we will
see naturally occurring gr-groupoid structures associated with some constructions in non-Abelian
cohomology. There is also a sense in which the link between fibrations and crossed modules given
earlier here, indicates that fibrations are like a related form of lax crossed modules. In the notion
of fibred category and the related Grothendieck construction, this intuition begins to be ‘solidified’
into a clearer strong relationship.

2.3.4 Automorphisms of a group yield a 2-group

We could also give this section a subtitle:

The automorphisms of a 1-type give a 2-type.

This is really an extended exercise in playing around with the ideas from the previous two
sections. It uses a small amount of categorical language, but, hopefully, in a way that should be
easy for even a categorical debutant to follow. The treatment will be quite detailed as it is that
detail that provides the links between the abstract and the concrete.

We start with a look at ‘functor categories’, but with groupoids rather than general small
categories as input. Suppose that G and H are groupoids, then we can form a new groupoid, HG ,
whose objects are the functors, f : G → H. Of course, functors in this context are just morphisms
of groupoids, and, if G, and H are G[1] and H[1], that is, two groups, G and H, thought of as one
object groupoids, then the objects of HG are just the homomorphisms from G to H thought of in
a slightly different way.

That gives the objects of HG . For the morphisms from f0 to f1, we ‘obviously’ should think
of natural transformations. (As usual, if you are not sufficiently conversant with elementary cate-
gorical ideas, pause and look them up in a suitable text of in Wikipedia.) Suppose η : f0 → f1 is a
natural transformation, then, for each x, an object of G, we have an arrow,

η(x) : f0(x)→ f1(x),

in H such that, if g : x→ y in G, then the square

f0(x)
η(x) //

f0(g)
��

f1(x)

f1(g)
��

f0(y)
η(y)

// f1(y)

commutes, so η ‘is’ the family, {η(x) | x ∈ Ob(G}. Now assume G = G[1] and H = H[1], and that
we try to interpret η(x) : f0(x) → f1(x) back down at the level of the groups, that is, a bit more
‘classically’ and group theoretically. There is only one object, which we denote ∗, if we need it, so
we have that η corresponds to a single element, η(∗), in H, which we will write as h for simplicity,
but now the condition for commutation of the square just says that, for any element g ∈ G,

hf0(g) = f1(g)h,
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i.e., that f0 and f1 are conjugate homomorphisms, f1 = hf0h
−1..

It should be clear, (but check that it is), that this definition of morphism makes HG into a
category, in fact into a groupoid, as the morphisms compose correctly and have inverses. (To get
the inverse of η take the family {η(x)−1 | x ∈ Ob(G} and check the relevant squares commute.)

So far we have ‘proved’:

Lemma 6 For groupoids, G and H, the functor category, HG, is a groupoid. �

We will be a bit sloppy in notation and will write HG for what should, more precisely, be written
H[1]G[1].

We note that it is usual to observe that, for Abelian groups, A, and B, the set of homomorphisms
from A to B is itself an Abelian group, but that the set of homomorphisms from one non-Abelian
group to another has no such nice structure. Although this is sort of true, the point of the above
is that that set forms the set of objects for a very neat algebraic object, namely a groupoid!

If we have a third groupoid, K, then we can also form KH and KG , etc. and, as the objects of
KH are homomorphisms from H to K, we might expect to compose with the objects of HG to get
ones of KG . We might thus hope for a composition functor

KH ×HG → KG .

(There are various things to check, but we need not worry. We are really working with functors
and natural transformations and with the investigation that shows that the category of small
categories is 2-category. This means that if you get bogged down in the detail, you can easily find
the ideas discussed in many texts on category theory.) This works, so we have that the category,
Grpds has also a 2-category structure. (It is a ‘Grpds-enriched’ category; see later for enriched
categories. The formal definition is in section ??, although the basic idea is used before that.)

We need to recall next that in any category, C, the endomorphisms of any object, X, form
a monoid, End(X) := C(X,X). You just use the composition and identities of C ‘restricted to
X’. If we play that game with any groupoid enriched category, C, then for any object, X, we will
have a groupoid, C(X,X), which we might write End(X), (that is, using the same font to indicate
‘enriched’) and which also has a monoid structure,

C(X,X)× C(X,X)→ C(X,X).

It will be a monoid internal to Grpds. In particular, for any groupoid, G, we have such an internal
monoid of endomorphisms, GG , and specialising down even further, for any group, G, such an
internal monoid, GG. Note that this is internal to the category of groupoids not of groups, as its
monoid of objects is the endomorphism monoid of G, not a single element set. Within GG, we
can restrict attention to the subgroupoid on the automorphisms of G. We thus have this groupoid,
Aut(G), which has as objects the automorphisms of G and, as typical morphism, η : f0 → f1, a
conjugation. It is important to note that as η is specified by an element of G and an automorphism,
f0, of G, the pair, (g, f0), may then be a good way of thinking of it. (Two points, that may be
obvious, but are important even if they are, are that the morphism η is not conjugation itself, but
conjugates f0. One has to specify where this morphism starts, its domain, as well as what it does,
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namely conjugate by g. Secondly, in (g, f0), we do have the information on the codomain of η, as
well. It is gf0g

−1 = f1.)
Using this basic notation for the morphisms, we will look at the various bits of structure this

thing has. (Remember, η : f0 → f1 and f1 = gf0g
−1, as we will need to use that several times.)

We have compositions of these pairs in two ways:
(a) as natural transformations: if

η : f0 → f1, η = (g, f0),
and η′ : f1 → f2, η′ = (g′, f1),

then the composite is η′]1η = (g′g, f0). (That is easy to check. As, for instance, f2 = g′f1(g′)−1 =
(g′g)f0(g′g)−1, . . . , it all works beautifully). (A word of warning here, (g′g)f0(g′g)−1 is the
conjugate of the automorphism f0 by the element (g′g). The bracket does not refer to f0 applied
to the ‘thing in the bracket’, so, for x ∈ G, ((g′g)f0(g′g)−1)(x) is, in fact, (g′g)f0(x)(g′g)−1. This
is slightly confusing so think about it, so as not to waste time later in avoidable confusion.)

b) using composition, ]0, in the monoid structure. To understand this, it is easier to look at
that composition as being specialised from the one we singled out earlier,

KH ×HG → KG ,

which is the composition in the 2-category of groupoids. (We really want G = H = K, but, by
keeping the more general notation, it becomes easier to see the roles of each G.)

We suppose f0, f1 : G → H, f ′0, f
′
1 : G → H, and then η : f0 → f1, η′ : f ′0 → f ′1. The 2-categorical

picture is

·

f0

##

f1

;;
�� ��
�� η ·

f ′0

##

f ′1

;;
�� ��
�� η
′ · = ·

f ′0f0

##

f ′1f1

;;
�� ��
��η
′′ · ,

with η′′ being the desired composite, η′]0η, but how is it calculated. The important point is the
interchange law . We can ‘whisker’ on the left or right, or, since the ‘left-right’ terminology can
get confusing (does ‘left’ mean ‘diagrammatically’ or ‘algebraically’ on the left?), we will often use
‘pre-’ and ‘post-’ as alternative prefixes. The terminology may seem slightly strange, but is quite
graphic when suitable diagrams are looked at! Whiskering corresponds to an interaction between
1-cell and 2-cells in a 2-category. In ‘post-whiskering’, the result is the composite of a 2-cell followed
by a 1-cell:

Post-whiskering:
f ′0]0η : f ′0]0f0 → f ′0]0f1,

·

f0

##

f1

;;
�� ��
�� η ·

f ′0 // ·

(It is convenient, here, to write the more formal f ′0]0f0, for what we would usually write as f ′0f0.)
The natural transformation, η is given by a family of arrows in H, so f ′0]0η is given by mapping
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that family across to K using f ′0. (Specialising to G = H = K = G[1], if η = (g, f0), then
f ′0]0η = (f ′0(g), f ′0f0), as is easily checked; similarly for f ′1]0η.)

Pre-whiskering:
η′]0f0 : f ′0]0f0 → f ′1]0f0,

· f0 // ·

f ′0

##

f ′1

;;
�� ��
�� η
′ · .

Here the morphism f0 does not influence the g-part of η′ at all. It just alters the domains. In the
case that interests us, if η′ = (g′, f ′0), then η′]0f0 = (g′, f ′0f0).

The way of working out η′]0η is by using ]1-composites. First,

η′]0η : f ′0f0 → f ′1f1,

and we can go
η′]0f0 : f ′0f0 → f ′1f0,

and then, to get to where we want to be, that is, f ′1f1, we use

f ′1]0η : f ′1f0 → f ′1f1.

This uses the ]1-composition, so

η′]0η = (f ′1]0η)]1(η′]0f0)

= (f ′1(g), f ′1f0)]1(g′, f ′0f0)

= (f ′1(g).g′, f ′0f0),

but f ′1(g) = g′f0(g)(g′)−1, so the end results simplifies to (g′f0(g), f ′0f0). Hold on! That looks
nice, but we could have also calculated η′]0η using the other form as the composite,

η′]0η = (η′]0f1)]1(f ′0]0η)

= (g′, f ′0f1)]1(f ′0(g), f ′0f0)

= (g′f ′0(g), f ′0f0),

so we did not have any problem. (All the properties of an internal groupoid in Grps, or, if you
prefer that terminology, 2-group, can be derived from these two compositions. The ]1 composition
is the ‘groupoid’ direction, whilst the ]0 is the ‘group’ one.)

We thus have a group of natural transformations made up of pairs, (g, f0) and whose multipli-
cation is given as above. This is just the semi-direct product group, G o Aut(G), for the natural
and obvious action of Aut(G) on G. This group is sometimes called the holomorph of G.

We have two homomorphisms from G o Aut(G) to Aut(G). One sends (g, f0) to f0, so is just
the projection, the other sends it to f1 = gf0g

−1 = ιg ◦ f0. We can recognise this structure as
being the associated 2-group of the crossed module, (G,Aut(G), ι), as we met on page 36. We call
Aut(G), the automorphism 2-group of G..
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2.3.5 Back to 2-types

From our crossed module, C = (C,P, ∂), we can build the internal groupoid, X (C), as before, then
apply the nerve construction internally to the internal groupoid structure to get a simplicial group,
K(C).

Definition: Given a crossed module, C = (C,P, ∂), the nerve (taken internally in Grps) of the
internal groupoid, X (C), defined by C, will be called the nerve of C or, if more precision is needed,
its simplicial group nerve and will be denoted K(C).

The simplicial set, W (K(C)), or its geometric realisation, would be called the classifying space
of C.

We need this in some detail in low dimensions.

K(C)0 = P

K(C)1 = C o P d0 = t, d1 = s

K(C)2 = C o (C o P ),

where d0(c2, c1, p) = (c2, ∂c1.p), d1(c2, c1, p) = (c2.c1, p) and d2(c2, c1, p) = (c1, p). The pattern
continues with K(C)n = C o (. . . o (C o P ) . . .), having n-copies of C. The di, for 0 < i < n, are
given by multiplication in C, d0 is induced from t and dn is a projection. The si are insertions of
identities. (We will examine this in more detail later.)

Remark: A word of caution: for G a group considered as a crossed module, this ‘nerve’ is not
the nerve of G in the sense used earlier. It is just the constant simplicial group corresponding to G.
What is often called the nerve of G is what here has been called its classifying space. One way to
view this is to note that X (C) has two independent structures, one a group, the other a category,
and this nerve is of the category structure. The group, G, considered as a crossed module is like a
set considered as a (discrete) category, having only identity arrows.)

The Moore complex of K(C) is easy to calculate and is just NK(C)i = 1 if i ≥ 2; NK(C)1
∼= C;

NK(C)0
∼= P with the ∂ : NK(C)1 → NK(C)0 being exactly the given ∂ of C. (This is left as an

exercise. It is a useful one to do in detail.)

Proposition 4 (Loday, [89]) The category CMod of crossed modules is equivalent to the subcate-
gory of Simp.Grps, consisting of those simplicial groups, G, having Moore complexes of length 1,
i.e. NGi = 1 if i ≥ 2. �

This raises the interesting question as to whether it is possible to find alternative algebraic descrip-
tions of the structures corresponding to Moore complexes of length n.

Is there any way of going directly from simplicial groups to crossed modules? Yes. The last two
terms of the Moore complex will give us:

∂ : NG1 → NG0 = G0

and G0 acts on NG1 by conjugation via s0, i.e. if g ∈ G0 and x ∈ NG1, then s0(g)xs0(g)−1 is
also in NG1. (Of course, we could use multiple degeneracies to make g act on an x ∈ NGn just
as easily.) As ∂ = d0, it respects the G0 action, so CM1 is satisfied. In general, CM2 will not be
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satisfied. Suppose g1, g2 ∈ NG1 and examine ∂g1g2 = s0d0g1.g2.s0d0g
−1
1 . This is rarely equal to

g1g2g
−1
1 . We write 〈g1, g2〉 = [g1, g2][g2, s0d0g1] = g1g2g

−1
1 .(∂g1g2)−1, so it measures the obstruction

to CM2 for this pair g1, g2. This is often called the Peiffer commutator of g1 and g2. Noting that
s0d0 = d0s1, we have an element

{g1, g2} = [s0g1, s0g2][s0g2, s1g1] ∈ NG2

and ∂{g1, g2} = 〈g1, g2〉. This second pairing is called the Peiffer lifting (of the Peiffer commutator).
Of course, if NG2 = 1, then CM2 is satisfied (as for K(C), above).

We could work with what we will call M(G, 1), namely

∂ :
NG1

∂NG2
→ NG0,

with the induced morphism and action. (As d0d0 = d0d1, the morphism is well defined.) This is a
crossed module, but we could have divided out by less if we had wanted to. We note that {g1, g2}
is a product of degenerate elements, so we form, in general, the subgroup Dn ⊆ NGn, generated
by all degenerate elements.

Lemma 7

∂ :
NG1

∂(NG2 ∩D2)
→ NG0

is a crossed module. �

This is, in fact, M(sk1G, 1), where sk1G is the 1-skeleton of G, i.e., the subsimplicial group gener-
ated by the k-simplices for k = 0, 1.

The kernel of M(G, 1) is π1(G) and the cokernel π0(G) and

π1(G)→ NG1

∂NG2
→ NG0 → π0(G)

represents a class k(G) ∈ H3(π0(G), π1(G)). Up to a notion of 2-equivalence, M(G, 1) represents
the 2-type of G completely. This is an algebraic version of the result of Mac Lane and Whitehead
we mentioned earlier. Once we have a bit more on cohomology, we will examine it in detail.

This use of NG2 ∩ D2 and our noting that {g1, g2} is a product of degenerate elements may
remind you of group T -complexes and thin elements. Suppose that G is a group T -complex in the
sense of our discussion at the end of the previous chapter (page 31). In a general simplicial group,
the subgroups, NGn∩Dn, will not be trivial. They give measure of the extent to which homotopical
information in dimension n on G depends on ‘stuff’ from lower dimensions., i.e., comparing G with
its (n− 1)-skeleton. (Remember that in homotopy theory, invariants such as the homotopy groups
do not necessarily vanish above the dimension of the space, just recall the sphere S2 and the subtle
structure of its higher homotopy groups.)

The construction here of M(sk1G, 1) involves ‘killing’ the images of our possible multiple ‘D-
fillers’ for horns, forcing uniqueness. We will see this again later.
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Chapter 3

Crossed complexes

Accurate encoding of homotopy types is tricky. Chain complexes, even of G-modules, can only
record certain, more or less Abelian, information. Simplicial groups, at the opposite extreme, can
encode all connected homotopy types, but at the expense of such a large repetition of the essential
information that makes calculation, at best, tedious and, at worst, virtually impossible. Complete
information on truncated homotopy types can be stored in the catn-groups of Loday, [89]. We will
look at these later. An intermediate model due to Blakers and Whitehead, [138], is that of a crossed
complex. The algebraic and homotopy theoretic aspects of the theory of crossed complexes have
been developed by Brown and Higgins, (cf. [29, 30], etc., in the bibliography and the forthcoming
monograph by Brown, Higgins and Sivera, [31]) and by Baues, [14–16]. We will use them later on
in several contexts.

3.1 Crossed complexes: the Definition

We will initially look at reduced crossed complexes, i.e., the group rather than the groupoid based
case.

Definition: A crossed complex, which will be denoted C, consists of a sequence of groups and
morphisms

C : . . .→ Cn
δn→ Cn−1

δn−1→ . . .→ C3
δ3→ C2

δ2→ C1

satisfying the following:
CC1) δ2 : C2 → C1 is a crossed module;
CC2) each Cn, (n > 2), is a left C1/δ1C2-module and each δn, (n > 2) is a morphism of left C1/δ2C2-
modules, (for n = 3, this means that δ3 commutes with the action of C1 and that δ3(C3) ⊂ C2

must be a C1/δ2C2-module);
CC3) δδ = 0.

The notion of a morphism of crossed complexes is clear. It is a graded collection of morphisms
preserving the various structures. We thus get a category, Crsred of reduced crossed complexes.

As we have that a crossed complex is a particular type of chain complex (of non-Abelian groups
near the bottom), it is natural to define its homology groups in the obvious way.

55
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Definition: If C is a crossed complex, its nth homology group is

Hn(C) =
Ker δn
Im δn+1

.

These homology groups are, of course, functors from Crsred to the category of Abelian groups.

Definition: A morphism f : C→ C′ is called a weak equivalence if it induces isomorphisms on
all homology groups.

There are good reasons for considering the homology groups of a crossed complex as being its
homotopy groups. For example, if the crossed complex comes from a simplicial group then the
homotopy groups of the simplicial group are the same as the homology groups of the given crossed
complex (possibly shifted in dimension, depending on the notational conventions you are using).

The non-reduced version of the concept is only a bit more difficult to write down. It has C1

as a groupoid on a set of objects C0 with each Ck, a family of groups indexed by the elements
of C0. The axioms are very similar; see [31] for instance or many of the papers by Brown and
Higgins listed in the bibliography. This gives a category, Crs, of (unrestricted) crossed complexes
and morphisms between them. This category is very rich in structure. It has a tensor product
structure, denoted C⊗D and a corresponding mapping complex construction, Crs(C,D), making it
into a monoidal closed category. The details are to be found in the papers and book listed above
and will be recalled later when needed.

It is worth noting that this notion restricts to give us a notion of weak equivalence applicable
to crossed modules as well.

Definition: A morphism, f : C→ C′, between two crossed modules, is called a weak equivalence
if it induces isomorphisms on π0 and π1, that is, on both the kernel and cokernel of the crossed
modules.

The relevant reference for π0 and π1 is page 40.

3.1.1 Examples: crossed resolutions

As we mentioned earlier, a resolution of a group (or other object) is a model for the homotopy
type represented by the group, but which usually is required to have some nice freeness properties.
With crossed complexes we have some notion of homotopy around, just as with chain complexes,
so we can apply that vague notion of resolution in this context as well. This will give us some neat
examples of crossed complexes that are ‘tuned’ for use in cohomology.

A crossed resolution of a group G is a crossed complex, C, such that for each n > 1, Im δn =
Ker δn−1 and there is an isomorphism, C1/δ2C2

∼= G.

A crossed resolution can be constructed from a presentation P = (X : R) as follows:

Let C(P ) → F (X) be the free crossed module associated with P. We set C2 = C(P), C1 =
F (X), δ1 = ∂. Let κ(P) = Ker(∂ : C(P) → F (X)). This is the module of identities of the
presentation and is a left G-module. As the category G-Mod has enough projectives, we can form
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a free resolution P of κ(P). To obtain a crossed resolution of G, we join P to the crossed module
by setting Cn = Pn−2 for n > 3, δn = dn−2 for n > 3 and the composite from P0 to C(P ) for n = 3.

3.1.2 The standard crossed resolution

We next look at a particular case of the above, namely the standard crossed resolution of G. In
this, which we will denote by CG, we have

(i) C1G = the free group on the underlying set of G. The element corresponding to u ∈ G will
be denoted by [u].

(ii) C2G is the free crossed module over C0G on generators, written [u, v], considered as elements
of the set G×G, in which the map δ1 is defined on generators by

δ[u, v] = [uv]−1[u][v].

(iii) For n > 3, CnG is the free left G-module on the set Gn, but in which one has equated to zero
any generator [u1, . . . , un] in which some ui is the identity element of G.

If n > 2, δ : Cn+1G→ CnG is given by the usual formula

δ[u1, . . . , un+1] = [u1][u2, . . . , un+1]

+
n∑
i=1

(−1)i[u1, . . . , uiui+1, . . . , un+1] + (−1)n+1[u1, . . . , un].

For n = 2, δ : C3G→ C2G is given by

δ[u, v, w] = [u][v, w].[u, v]−1.[uv,w]−1[u, vw].

This is the crossed analogue of the inhomogeneous bar resolution, BG, of the group G. A groupoid
version can be found in Brown-Higgins, [28], and the abstract group version in Huebschmann, [77].
In the first of these two references, it is pointed out that CG, as constructed, is isomorphic to the
crossed complex, π(BG), of the classifying space of G considered with its skeletal filtration.

For any filtered space, X = (Xn)n∈N, its fundamental crossed complex, π(X), is, in general, a
non-reduced crossed complex. It is defined to have

π(X)n = (πn(Xn, Xn−1, a))a∈X0

with π(X)1, the fundamental groupoid Π1X1X0, and π(X)2, the family, (π2(X2, X1, a))a∈X0 . It
will only be reduced if X0 consists just of one point.

Most of the time we will only discuss the reduced case in detail, although the non-reduced case
will be needed sometimes. Following that, we will often use the notation Crs for the category of
reduced crossed complexes unless we need the more general case. This may occasionally cause a
little confusion, but it is much more convenient for most of the time.

There are two useful, but conflicting, conventions as to indexation in crossed complexes. In the
topologically inspired one, the bottom group is C1, in the simplicial and algebraic one, it is C0.
Both get used and both have good motivation. The natural indexation for the standard crossed
resolution would seem to be with Cn being generated by n-tuples, i.e. the topological one. (I am
not sure that all instances of the other have been avoided, so please be careful!)
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G-augmented crossed complexes. Crossed resolutions of G are examples of G-augmented
crossed complexes. A G-augmented crossed complex consists of a pair (C, ϕ) where C is a crossed
complex and where ϕ : C1 → G is a group homomorphism satisfying

(i) ϕδ1 is the trivial homomorphism;
(ii) Ker ϕ acts trivially on Ci for i ≥ 3 and also on CAb2 .

A morphism
(α, IdG) : (C, ϕ)→ (C′, ϕ′)

of G-augmented crossed complexes consists of a morphism

α : C→ C′

of crossed complexes such that ϕ′α0 = ϕ.
This gives a category, CrsG, which behaves nicely with respect to change of groups, i.e. if

ϕ : G→ H, then there are induced functors between the corresponding categories.

3.2 Crossed complexes and chain complexes: I

(Some of the proofs here are given in more detail as they are less routine and are not that available
elsewhere. A source for much of this material is in the work of Brown and Higgins, [30], where
these ideas were explored thoroughly for the first time; see also the treatment in [31].)

We have introduced crossed complexes where normally chain complexes of modules would have
been used. We have seen earlier the bar resolution and now we have the standard crossed resolution.
What is the connection between them? The answer is approximately that chain complexes form
a category equivalent to a reflective subcategory of Crs. In other words, there is a canonical way
of building a chain complex from a crossed one akin to the process of Abelianising a group. The
resulting reflection functor sends the standard crossed resolution of a group to the bar resolution.
The details involve some interesting ideas.

In chapter 2, we saw that, given a morphism θ : M → N of modules over a group G, ∂ :
M → N o G, given by ∂(m) = (θ(m), 1G) is a crossed module, where N o G acts on M via the
projection to G. That example easily extends to a functorial construction which, from a positive
chain complex, D, of G-modules, gives us a crossed complex ∆G(D) with ∆G(D)n = Dn if n > 1
and equal to D1 oG for n = 1.

Lemma 8 ∆G : Ch(G−Mod)→ CrsG is an embedding.

Proof: That ∆G is a functor is easy to see. It is also easy to check that it is full and faithful, that
is it induces bijections,

Ch(G−Mod)(A,B)→ CrsG(∆G(A),∆G(B)).

The augmentation of ∆G(A) is given by the projection of A1 oG onto G. �

We can thus turn a positive chain complex into a crossed complex. Does this functor have a
left adjoint? i.e. is there a functor ξG : CrsG → Ch(G−Mod) such that

Ch(G−Mod)(ξG(C),D)→ CrsG(C,∆G(D))?
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If so it would suggest that chain complexes of G-modules are like G-augmented crossed complexes
that satisfy some additional equational axioms. As an example of a similar situation think of
‘Abelian groups’ within ‘groups’ for which the inclusion has a left adjoint, namely Abelianisation
(G)Ab = G/[G,G]. Abelian groups are of course groups that satisfy the additional rule [x, y] = 1.
Other examples of such situations are nilpotent groups of a given finite rank c. The subcategories
of this general form are called varieties and, for instance, the study of varieties of groups is a very
interesting area of group theory. Incidentally, it is possible to define various forms of cohomology
modulo a variety in some sense. We will not explore that here.

We thus need to look at morphisms of crossed complexes from a crossed complex C to one of
form ∆G(D), and we need therefore to look at morphisms into a semidirect product. These are
useful for other things, so are worth looking at in detail.

3.2.1 Semi-direct product and derivations.

Suppose that we have a diagram

H
f //

α
  @@@@@@@@ K oG

proj{{wwwwwwwww

G

where K is a G-module (written additively, so we write g.k not gk for the action). This is like the
very bottom of the situation for a morphism f : C→ ∆G(D).

As the codomain of f is a semidirect product, we can decompose f , as a function, in the form

f(h) = (f1(h), α(h)),

identifying its second component using the diagram. The mapping f1 is not a homomorphism. As
f is one, however, we have

(f1(h1h2), α(h1h2)) = f(h1)f(h2) = (f1(h1) + α(h1)f1(h2), α(h1h2)),

i.e. f1 satisfies
f1(h1h2) = f1(h1) + α(h1)f1(h2)

for all h1, h2 ∈ H.

3.2.2 Derivations and derived modules.

We will use the identification of G-modules for a group G with modules over the group ring,
Z[G], of G. Recall that this ring is obtained from the free Abelian group on the set G by defining a
multiplication extending linearly that of G itself. (Formally if, for the moment, we denote by eg, the
generator corresponding to g ∈ G, then an arbitrary element of Z[G] can be written as

∑
g∈G ngeg

where the ng are integers and only finitely many of them are non-zero. The multiplication is by
‘convolution’ product, that is,(∑

g∈G
ngeg

)(∑
g∈G

mgeg

)
=
∑
g∈G

( ∑
g1∈G

ng1mg−1
1 geg

)
.



60 CHAPTER 3. CROSSED COMPLEXES

Sometimes, later on, we will need other coefficients that Z in which case it is appropriate to use
the term ‘group algebra’ of G, over that ring of coefficients.

We will also need the augmentation, ε : Z[G] → Z, given by ε(
∑

g∈G ngeg) =
∑

g∈G ng and its
kernel I(G), known as the augmentation ideal.

Definitions: Let ϕ : G→ H be a homomorphism of groups. A ϕ-derivation

∂ : G→M

from G to a left Z[H]-module, M , is a mapping from G to M , which satisfies the equation

∂(g1g2) = ∂(g1) + ϕ(g1)∂(g2)

for all g1, g2 ∈ G.

Such ϕ-derivations are really all derived from a universal one.

Definition: A derived module for ϕ consists of a left Z[H]-module, Dϕ, and a ϕ-derivation,
∂ϕ : G→ Dϕ with the following universal property:

Given any left Z[H]-module, M , and a ϕ-derivation ∂ : G→M , there is a unique morphism

β : Dϕ →M

of Z[H]-modules such that β∂ϕ = ∂.
The derivation ∂ϕ is called the universal ϕ derivation.

The set of all ϕ-derivations from G to M has a natural Abelian group structure. We denote
this set by Derϕ(G,M). This gives a functor from H-Mod to Ab, the category of Abelian groups.
If (Dϕ, ∂ϕ) exists, then it sets up a natural isomorphism

Derϕ(G,M) ∼= H−Mod(Dϕ,M),

i.e., (Dϕ, ∂ϕ) represents the ϕ-derivation functor.

3.2.3 Existence

The treatment of derived modules that is found in Crowell’s paper, [51], provides a basis for what
follows. In particular it indicates how to prove the existence of (Dϕ, ∂ϕ) for any ϕ.

Form a Z[H]-module, D, by taking the free left Z[H]-module, Z[H](X), on a set of generators,
X = {∂g : g ∈ G}. Within Z[H](X) form the submodule, Y , generated by the elements

∂(g1g2)− ∂(g1)− ϕ(g1)∂(g2).

Let D = Z[H](X)/Y and define d : G→ D to be the composite:

G
η−→ Z[H](X) quotient−−−−−→ D,

where η is “inclusion of the generators”, η(g) = ∂g, thus d, by construction, will be a ϕ-derivation.
The universal property is easily checked and hence (Dϕ, ∂ϕ) exists.
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We will later on construct (Dϕ, ∂ϕ) in a different way which provides a more amenable descrip-
tion of Dϕ, namely as a tensor product. As a first step towards this description, we shall give a
simple description of DG, that is, the derived module of the identity morphism of G. More precisely
we shall identify (DG, ∂G) as being (I(G), ∂), where, as above, I(G) is the augmentation ideal of
Z[G] and ∂ : G→ I(G) is the usual map, ∂(g) = g − 1.

Our earlier observations give us the following useful result:

Lemma 9 If G is a group and M is a G-module, then there is an isomorphism

DerG(G,M)→ Hom/G(G,M oG)

where Hom/G(G,MoG) is the set of homomorphisms from G to MoG over G, i.e., θ : G→MoG
such that for each g ∈ G, θ(g) = (g, θ′(g)) for some θ′(g) ∈M . �

3.2.4 Derivation modules and augmentation ideals

Proposition 5 The derivation module DG is isomorphic to I(G) = Ker(Z[G]→ Z). The univer-
sal derivation is

dG : G→ I(G)

given by dG(g) = g − 1.

Proof:

We introduce the notation fδ : I(G) → M for the Z[G]-module morphism corresponding to a
derivation

δ : G→M.

The factorisation fδdG = δ implies that fδ must be defined by fδ(g − 1) = δ(g). That this works
follows from the fact that I(G), as an Abelian group, is free on the set {g − 1 : g ∈ G} and that
the relations in I(G) are generated by those of the form

g1(g2 − 1) = (g1g2 − 1)− (g1 − 1).

�

We note a result on the augmentation ideal construction that is not commonly found in the
literature.

The proof is easy and so will be omitted.

Lemma 10 Given groups G and H in C and a commutative diagram

G
δ //

ψ

��

M

ϕ

��
H

δ′
// N

(∗)
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where δ, δ′ are derivations, M is a left Z[G]-module, N is a left Z[H]-module and ϕ is a module
map over ψ, i.e., ϕ(g.m) = ψ(g)ϕ(m) for g ∈ G, m ∈M . Then the corresponding diagram

I(G)
fδ //

ψ
��

M

ϕ

��
I(H)

fδ′
// N

(∗∗)

is commutative. �

The earlier proposition has the following corollaries:

Corollary 1 The subset ImdG = {g − 1 : g ∈ G} ⊂ I(G) generates I(G) as a Z[G]-module.
Moreover the relations between these generators are generated by those of the form

(g1g2 − 1)− (g1 − 1)− g1(g2 − 1).

�

It is useful to have also the following reformulation of the above results stated explicitly.

Corollary 2 There is a natural isomorphism

DerG(G,M) ∼= G−Mod(I(G),M).

�

3.2.5 Generation of I(G).

The first of these two corollaries raises the question as to whether, if X ⊂ G generates G, does the
set GX = {x− 1 : x ∈ X} generate I(G) as a Z[G]-module.

Proposition 6 If X generates G, then GX generates I(G).

Proof: We know I(G) is generated by the g − 1s for g ∈ G. If g is expressible as a word of length
n in the generators X then we can write g − 1 as a Z[G]-linear combination of terms of the form
x−1 in an obvious way. (If g = w.x with w of lesser length than that of g, g−1 = w−1+w(x−1),
so use induction on the length of the expression for g in terms of the generators.) �

When G is free: If G is free, say, G ∼= F (X), i.e., is free on the set X, we can say more.

Proposition 7 If G ∼= F (X) is the free group on the set X, then the set {x − 1 : x ∈ X} freely
generates I(G) as a Z[G]-module.

Proof: (We will write F for F (X).) The easiest proof would seem to be to check the universal
property of derived modules for the function δ : F → Z[G](X), given on generators by

δ(x)(y) =

{
1 if x = y
0 if y 6= x;
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then extended using the derivation rule to all of F using induction. This uses essentially that each
element of F has a unique expression as a reduced word in the generators, X.

Suppose then that we have a derivation ∂ : F → M , define ∂ : Z[G](X) → M by ∂(ex) = ∂(x),
extending linearly. Since by construction ∂δ = ∂ and is the unique such homomorphism, we are
home. �

Note: In both these proofs we are thinking of the elements of the free module on X as being
functions from X to the group ring, these functions being of ‘finite support’, i.e. being non-zero
on only a finite number of elements of X. This can cause some complications if X is infinite or
has some topology as it will in some contexts. The idea of the proof will usually go across to that
situation but details have to change. (A situation in which this happens is in profinite group theory
where the derivations have to be continuous for the profinite topology on the group, see [111].)

3.2.6 (Dϕ, dϕ), the general case.

We can now return to the identification of (Dϕ, dϕ) in the general case.

Proposition 8 If ϕ : G→ H is a homomorphism of groups, then Dϕ
∼= Z[H]⊗G I(G), the tensor

product of Z[H] and I(G) over G.

Proof: If M is a Z[H]-module, we will write ϕ∗(M) for the restricted Z[G]-module, i.e. M with
G-action given by g.m := ϕ(g).m. Recall that the functor ϕ∗ has a left adjoint given by sending a
G-module, N to Z[H] ⊗G N , i.e. take the tensor of Abelian groups, Z[H] ⊗ N and divide out by
x⊗ g.n ≡ xϕ(g)⊗ n.

With this notation we have a chain of natural isomorphisms,

Derϕ(G,M) ∼= DerG(G,ϕ∗(M))
∼= G−Mod(I(G), ϕ∗(M))
∼= H−Mod(Z[H]⊗G I(G),M),

so by universality,
Dϕ
∼= Z[H]⊗G I(G),

as required. �

3.2.7 Dϕ for ϕ : F (X)→ G.

The above will be particularly useful when ϕ is the “co-unit” map, F (X) → G, for X a set
that generates G. We could, for instance, take X = G as a set, and ϕ to be the usual natural
epimorphism.

In fact we have the following:

Corollary 3 Let ϕ : F (X)→ G be an epimorphism of groups, then there is an isomorphism

Dϕ
∼= Z[G](X)

of Z[G]-modules. In this isomorphism, the generator ∂x, of Dϕ corresponding to x ∈ X, satisfies

dϕ(x) = ∂x

for all x ∈ X. �

(You should check that you see how this follows from our earlier results.)
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3.3 Associated module sequences

3.3.1 Homological background

Given an exact sequence
1→ K → L→ Q→ 1

of abstract groups, then it is a standard result from homological algebra that there is an associated
exact sequence of modules,

0→ KAb → Z[Q]⊗L I(L)→ I(Q)→ 0.

There are several different proofs of this. Homological proofs give this as a simple consequence of
the TorL-sequence corresponding to the exact sequence

0→ I(L)→ Z[L]→ Z→ 0

together with a calculation of TorL1 (Z[Q],Z), but we are not assuming that much knowledge of
standard homological algebra. That homological proof also, to some extent, hides what is happening
at the ‘elementary’ level, in both the sense of ‘simple’ and also that of‘what happens to the ‘elements’
of the groups and modules concerned.

The second type of proof is more directly algebraic and has the advantage that it accentuates
various universal properties of the sequence. The most thorough treatment of this would seem to
be by Crowell, [51], for the discrete case. We outline it below.

3.3.2 The exact sequence.

Before we start on the discussion of the exact sequence, it will be useful to have at our disposal
some elementary results on Abelianisation of the groups in a crossed module. Here we actually
only need them for normal subgroups but we will need it shortly anyway in the more general form.
Suppose that (C,P, ∂) is a crossed module, and we will set A = Ker∂ with its module structure
that we looked at before, and N = ∂C, so A is a P/N -module.

Lemma 11 The Abelianisation of C has a natural Z[P/N ]-module structure on it.

Proof: First we should point out that by “Abelianisation” we mean CAb = C/[C,C], which is,
of course, Abelian and it suffices to prove that N acts trivially on CAb, since P already acts in a
natural way. However, if n ∈ N , and ∂c = n, then for any c′ ∈ C, we have that nc′ = ∂cc′ = cc′c−1,
hence nc′(c′)−1 ∈ [C,C] or equivalently

n(c′[C,C]) = c′[C,C],

so N does indeed act trivially on CAb. �

Of course NAb also has the structure of a Z[P/N ]-module and thus a crossed module gives one
three P/N -modules. These three are linked as shown by the following proposition.

Proposition 9 Let (C,P, ∂) be a crossed module. Then the induced morphisms

A→ CAb → NAb → 0

form an exact sequence of Z[P/N ]-modules.
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Proof: It is clear that the sequence

1→ A→ C → N → 1

is exact and that the induced homomorphism from CAb to NAb is an epimorphism. Since the
composite homomorphism from A to N is trivial, A is mapped into Ker(CAb → NAb) by the
composite A→ C → CAb. It is easily checked that this is onto and hence the sequence is exact as
claimed. �

Now for the main exact sequence result here:

Proposition 10 Let

1→ K
ϕ→ L

ψ→ Q→ 1

be an exact sequence of groups and homomorphisms. Then there is an exact sequence

0→ KAb ϕ̃→ Z[Q]⊗LI(L)
ψ̃→ I(Q)→ 0

of Z[Q]-modules.

Proof: By the universal property of Dψ, there is a unique morphism

ψ̃ : Dψ → I(Q)

such that ψ̃∂ψ = I(ψ)∂L.

Let δ : K → KAb = K/[K,K] be the canonical Abelianising morphism. We note that ∂ψϕ :
K → Dψ is a homomorphism (since

∂ψϕ(k1k2) = ∂ψϕ(k1) + ψϕ(k1)∂ψϕ(k2)

= ∂ψϕ(k1) + ∂ψϕ(k2), )

so let ϕ̃ : KAb → Dψ be the unique morphism satisfying ϕ̃δ = ∂ψϕ with KAb having its natural
Z[Q]-module structure.

That the composite ψ̃ϕ̃ = 0 follows easily from ψϕ = 0. Since Dψ is generated by symbols d`
and ψ̃(d`) = ψ(`)− 1, it follows that ψ̃ is onto. We next turn to “Ker ψ̃ ⊆ Im ϕ̃”.

If we can prove α : Dψ → I(Q) is the cokernel of ϕ̃, then we will have checked this inclusion
and incidentally will have reproved that ψ̃ is onto.

Now let Dψ → C be any morphism such that αϕ̃ = 0. Consider the diagram

K
ϕ //

δ
��

L

∂ψ
��

ψ // Q

∂Q
��

KAb
ϕ̃ // Dψ

ψ̃ //

α
""EEEEEEEEE C(Q)

C
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The composite α∂ψ vanishes on the image of ϕ since α∂ψϕ = αϕ̃δ and αϕ̃ is assumed zero.
Define d : Q → C by d(q) = α∂ψ(`) for ` ∈ L such that ψ(`) = q. As α∂ψ vanishes on Im ϕ, this
is well defined and

d(q1q2) = α∂ψ(`1`2)

= α∂ψ(`1) + α(ψ(`1)∂ψ(`2))

= d(q1) + q1d(q2)

so d factors as ᾱ∂Q in a unique way with ᾱ : I(Q)→ C. It remains to prove that α = ψ̃, but

ψ̃∂ψ = IC(ψ)∂L

= ∂Qψ

by the naturality of ∂. Now finally note that ᾱ∂Q = d and dψ = α∂ψ to conclude that ψ̃∂ψ and α∂ψ
are equal. Equality of α and ᾱψ̃ then follows by the uniqueness clause of the universal property of
(Dψ, ∂ψ).

Next we need to check that KAb → Dψ is a monomorphism. To do this we use the fact that
there is a transversal, s : Q → L, satisfying s(1) = 1. This means that, following Crowell, [51] p.
224, we can for each ` ∈ L, q ∈ Q, find an element q × ` uniquely determined by the equation

ϕ(q × `)) = s(q)`s(qψ(`))−1,

which, of course, defines a function from Q× L to K. Crowell’s lemma 4.5 then shows

q × `1`2 = (q × `1)(qψ(`1)× `2) for `1, `2 ∈ L.

Now let M = Z[Q](X), with X = {∂` : ` ∈ L}, so that there is an exact sequence

M → Dψ → 0.

The underlying group of Z[Q] is the free Abelian group on the underlying set of Q. Similarly M ,
above, has, as underlying group, the free Abelian group on the set Q×X.

Define a map τ : M → KAb of Abelian groups by

τ(a, ∂`) = δ(q × `).

We check that if p(m) = 0, then τ(m) = 0. Since Ker p is generated as a Z[Q]-module by elements
of the form

∂(`1`2)− ∂`1 − ψ(`1)∂`2,

it follows that as an Abelian group, Ker p is generated by the elements

(q, ∂(`1`2))− (q, ∂`1)− (qψ(`1), ∂`2).

We claim that τ is zero on these elements; in fact

τ(q, ∂(`1`2)) = δ(q × (`1`2))

= δ(q × `1) + δ(qψ(`1)× `2)

= τ(q, `1) + τ(qψ(`1), `2).
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Thus τ induces a map η : Dψ → KAb of Abelian groups.
Finally we check ηϕ̃ = identity, so that ϕ̃ is a monomorphism: let b ∈ KAb, k ∈ K be such that

δ(k) = b, then

ηϕ̃(b) = ηϕ̃δ(k)

= η∂ψ(k)

= δ(1× ϕ(k)),

but 1× ϕ(k) is uniquely determined by

ϕ(1× ϕ(k)) = s(1)ϕ(k)s(1ψϕ(k))−1 = ϕ(k),

since s(1) = 1, hence 1× ϕ(k) = k and ηϕ̃(b) = δ(k) = b as required. �

A discussion of the way in which this result interacts with the theory of covering spaces can
be found in Crowell’s paper already cited. We will very shortly see the connection of this module
sequence with the Jacobian matrix of a group presentation and the Fox free differential calculus. It
is this latter connection which suggests that we need more or less explicit formulae for the maps ϕ̃
and ψ̃ and hence requires that Crowell’s detailed proof be used, not the slicker homological proof.

3.3.3 Reidemeister-Fox derivatives and Jacobian matrices

At various points, we will refer to Reidemeister-Fox derivatives as developed by Fox in a series of
articles, see [63], and also summarised in Crowell and Fox, [52]. We will call these derivatives Fox
derivatives.

Suppose G is a group and M a G-module and let δ : G → M be a derivation, (so δ(g1g2) =
δ(g1) + g1δ(g2) for all g1, g2 ∈ G), then, for calculations, the following lemma is very valuable,
although very simple to prove.

Lemma 12 If δ : G→M is a derivation, then
(i) δ(1G) = 0;
(ii) δ(g−1) = −g−1δ(g) for all g ∈ G;
(iii) for any g ∈ G and n ≥ 1,

δ(gn) = (
n−1∑
k=0

gk)δ(g).

Proof: As was said, these are easy to prove.
δ(g) = δ(1g) + 1δ(g), so δ(1) = 0, and hence (i); then

δ(1) = δ(g−1g) = δ(g−1) + g−1δ(g)

to get (ii), and finally induction to get (iii). �

The Fox derivatives are derivations taking values in the group ring as a left module over itself.
They are defined for G = F (X), the free group on a set X. (We usually write F for F (X) in what
follows.)
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Definition: For each x ∈ X, let
∂

∂x
: F → ZF

be defined by
(i) for y ∈ X,

∂y

∂x
=

{
1 if x = y
0 if y 6= x;

(ii) for any words, w1, w2 ∈ F ,

∂

∂x
(w1w2) =

∂

∂x
w1 + w1

∂

∂x
w2.

Of course, a routine proof shows that the derivation property in (ii) defines ∂w
∂x for any w ∈ F .

This derivation, ∂
∂x , will be called the Fox derivative with respect to the generator x.

Example: Let X = {u, v}, with r ≡ uvuv−1u−1v−1 ∈ F = F (u, v), then

∂r

∂u
= 1 + uv − uvuv−1u−1,

∂r

∂v
= u− uvuv−1 − uvuv−1u−1v−1.

This relation is the typical braid group relation, here in Br3, and we will come back to these simple
calculations later.

It is often useful to extend a derivation δ : G→M to a linear map from ZG to M by the simple
rule that δ(g + h) = δ(g) + δ(h).

We have
Der(F,ZF ) ∼= F−Mod(IF,ZF ),

and that
IF ∼= ZF (X),

with the isomorphism matching each generating x−1 with ex, the basis element labelled by x ∈ X.
(The universal derivation then sends x to ex.)

For each given x, we thus obtain a morphism of F -modules:

dx : ZF (X) → ZF

with

dx(ey) = 1 if y = x

dx(ey) = 0 if y 6= x,

i.e., the ‘projection onto the xth-factor’ or ‘evaluation at x ∈ X’ depending on the viewpoint taken
of the elements of the free module, ZF (X).

Suppose now that we have a group presentation, P = (X : R), of a group, G. Then we have a
short exact sequence of groups

1→ N
ϕ→ F

γ→ G→ 1,
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where N = N(R), F = F (X), i.e., N is the normal closure of R in the free group F . We also have
a free crossed module,

C
∂→ F,

constructed from the presentation and hence, two short exact sequences of G-modules with κ(P) =
Ker ∂, the module of identities of P,

0→ κ(P)→ CAb → NAb → 0,

and also
0→ NAb ϕ̃→ IF ⊗F ZG→ IG→ 0.

We note that the first of these is exact because N is a free group, (see Proposition 12, which will
be proved shortly), further

CAb ∼= ZG(R),

(the proof is left to you to manufacture from earlier results), and the map from this to NAb in the
first sequence sends the generator er to r[N,N ].

We next revisit the derivation of the associated exact sequence (Proposition 10, page 65) in
some detail to see what ϕ̃ does to r[N,N ]. We have ϕ̃(r[N,N ]) = ∂γϕ(r) = ∂γ(r), considering r
now as an element of F , and by Corollary 3, on identifying Dγ with ZG(X) using the isomorphism
between IF and ZF (X), we can identify ∂γ(x) = ex. We are thus left to determine ∂γ(r) in terms
of the ∂γ(x), i.e., the ex. The following lemma does the job for us.

Lemma 13 Let δ : F →M be a derivation and w ∈ F , then

δw =
∑
x∈X

∂w

∂x
δx.

Proof: By induction on the length of w. �

In particular we thus can calculate

∂γ(r) =
∑ ∂r

∂x
ex.

Tensoring with ZG, we get

ϕ̃(r[N,N ]) =
∑ ∂r

∂x
ex ⊗ 1.

There is one final step to get this into a usable form:
From the quotient map γ : F → G, we, of course, get an induced ring homomorphism, γ :

ZF → ZG, and hence we have elements γ( ∂r∂x) ∈ ZG. Of course,

∂r

∂x
ex ⊗ 1 = ex ⊗ γ(

∂r

∂x
),

so we have, on tidying up notation just a little:

Proposition 11 The composite map

ZG(R) → NAb → ZG(X)

sends er to
∑
γ( ∂r∂x)ex and so has a matrix representation given by JP =

(
γ( ∂ri∂xj

)
)
. �
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Definition: The Jacobian matrix of a group presentation, P = (X : R) of a group G is

JP =
(
γ(
∂ri
∂xj

)
)
,

in the above notation.

The application of γ to the matrix of Fox derivatives simplifies expressions considerable in the
matrix. The usual case of this is if a relator has the form rs−1, then we get

∂rs−1

∂x
=
∂r

∂x
− rs−1 ∂s

∂x

and if r or s is quite long this looks moderately horrible to work out! However applying γ to the
answer, the term rs−1 in the second of the two terms becomes 1. We can actually think of this as
replacing rs−1 by r − s when working out the Jacobian matrix.

Example: Br3 revisited. We have r ≡ uvuv−1u−1v−1, which has the form (uvu)(vuv)−1.
This then gives

γ(
∂r

∂u
) = 1 + uv − v and γ(

∂r

∂v
) = u− 1− vu,

abusing notation to ignore the difference between u, v in F (u, v) and the generating u, v in Br3.

Homological 2-syzygies: In general we obtain a truncated chain complex:

ZG(R) d2→ ZG(X) d1→ ZG d0→ Z→ 0,

with d2 given by the Jacobian matrix of the presentation, and d1 sending generator e1
x to 1− x, so

Imd1 is the augmentation ideal of ZG.

Definition: A homological 2-syzygy is an element in Ker d2.

A homological 2-syzygy is thus an element to be killed when building the third level of a
resolution of G. What are the links between homotopical and homological syzygies? Brown and
Huebschmann, [32], show they are isomorphic, as Ker d2 is isomorphic to the module of identities.
We will examine this result in more detail shortly.

Extended example: Homological Syzygies for the braid group presentations: The
Artin braid group, Brn+1, defined using n+ 1 strands is given by

• generators: yi, i = 1, . . . , n;

• relations: rij ≡ yiyjy−1
i y−1

j for i+ 1 < j;

rii+1 ≡ yiyi+1yiy
−1
i+1y

−1
i y−1

i+1 for 1 ≤ i < n.

We will look at such groups only for small values of n.
By default, Br2 has one generator and no relations, so is infinite cyclic.

The group Br3: (We will simplify notation writing u = y1, v = y2.)
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This then has presentation P = (u, v : r ≡ uvuv−1u−1v−1). It is also the ‘trefoil group’, i.e.,
the fundamental group of the complement of a trefoil knot. If we construct X(2) = K(P), this is
already a K(Br3, 1) space, having a trivial π2. There are no higher syzygies.

We have all the calculation for working with homological syzygies here. The key part of the
complex is the Jacobian matrix as that determines d2:

d2 =
(

1 + uv − v u− 1− vu
)
.

This has trivial kernel, but, in fact, that comes most easily from the identification with homotopical
syzygies.

The group Br4: simplifying notation as before, we have generators u, v, w and relations

ru ≡ vwvw−1v−1w−1,

rv ≡ uwu−1w−1,

rw ≡ uvuv−1u−1v−1.

The 1-syzygies are made up of hexagons for ru and rw and a square for rv. There is a fairly obvious
way of fitting together squares and hexagons, namely as a permutohedron, and there is a labelling
of such that gives a homotopical 2-syzygy.

The presentation yields a truncated chain complex with d2

ZG(ru,rv ,rw) d2−→ ZG(u,v,w)

with

d2 =

 0 1 + vw − w v − 1− wv
1− w 0 u− 1

1 + uv − v u− 1− vu 0


and Loday, [90], has calculated that for the permutohedral 2-syzygy, s, one gets another term of
the resolution, ZG(s), and a d3 : ZG(s) → ZG(ru,rv ,rw) given by

d3 =
(

1 + vu− u− wuv v − vwu− 1− uv − vuwv 1 + vw − w − uvw
)
.

For more on methods of working with these syzygies, have a look at Loday’s paper, [90], and some
of the references that you will find there.

3.4 Crossed complexes and chain complexes: II

(The source for the material and ideas in this section is once again [30].)

3.4.1 The reflection from Crs to chain complexes

It is now time to return to the construction of a left adjoint for ∆G.

Theorem 3 ( Brown-Higgins, [30] in a slightly more general form.) The functor, ∆G, has a left
adjoint.
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Proof: We construct the left adjoint explicitly as follows:
Let f. : (C, ϕ) → ∆G(M.) be a morphism in CrsG, then we have the following commutative

diagram

. . . // C2
δ2 //

f2
��

C1
δ1 //

f1
��

C0
ϕ //

f0
��

G

IdG
��

. . . //M2
δ2 //M1

δ1 //M0 oG
prG // G

Since the right hand square commutes, f0 is given by some formula

f0(c) = (∂(c), ϕ(c)),

where ∂ : C0 →M0 is a ϕ-derivation. Thus ∂ = f̃0∂ϕ for a unique G-module morphism, f̃0 : Dϕ →
M0, and f0 factors as

C0
ϕ̄→ Dϕ oG

f̃0oG→ M0 oG,

where ϕ̄(c) = (∂ϕ(c), ϕ(c)).
The map ∂ϕδ1 : C1 → Dϕ is a homomorphism since

∂ϕδ1(c1c2) = ∂ϕ∂1(c1) + ϕ∂1(c1)∂ϕ∂1(c2)

= ∂ϕ∂1(c1) + ∂ϕ∂1(c2),

ϕ∂1 being trivial (because (C, ϕ) is G-augmented). We thus obtain a map d : CAb1 → Dϕ given
by d(c[C,C]) = ∂ϕ∂1(c) for c ∈ C1. As we observed earlier the Abelian group CAb1 has a natural
Z[G]-module structure making d a G-module morphism.

Similarly there is a unique G-module morphism,

f̃1 : CAb1 →M1,

satisfying
f̃1(c[C,C]) = f1(c).

Since for c ∈ C1,
(d1f̃1(c), 1) = f0(δ1c) = (f̃0∂ϕ(δ1c1), 1),

we have that the diagram

CAb1

f̃1 //

d
��

M1

d1
��

Dϕ
f̃0 //M0

commutes.
We also note that since δ2 : C2 → C1 maps into Ker δ1, the composite

C2
δ2→ C1

can→ CAb1
d→ Dϕ,

being given by d(δ2(c)[C,C] = ∂ϕδ1δ2(c), is trivial and that f̃1δ2(c[C,C]) = f1δ2(c) = d2f2(c), thus
we can define ξ = ξG(C, ϕ) by

ξn = Cn if n ≥ 2

ξ1 = CAb1 ,

ξ0 = Dϕ,
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the differentials being as constructed. We note that as Ker ϕ acts trivially on all Cn for n ≥ 2, all
the Cn have Z[G]-module structures.

That ξG gives a functor
Crs→ Ch(G−Mod)

is now easy to check using the uniqueness clauses in the universal properties of Dϕ and Abeliani-
sation. Again uniqueness guarantees that the process “f goes to f̃” gives a natural isomorphism

Ch(G−Mod)(ξG(C, ϕ),M) ∼= CrsG((C, ϕ),∆G(M))

as required. �

It is relatively easy to extend the above natural isomorphism to handle morphisms of crossed
complexes over different groups. For a detailed treatment one needs a discussion of the way that
the change of groups functors work with crossed modules or crossed complexes, that is, if we have
a morphism of groups θ : G → H then we would expect to get functors between CrsG and CrsH
induced by θ. These do exist and are very nicely behaved, but they will not be discussed here, see
[111] for a full treatment in the more general context of profinite groups.

3.4.2 Crossed resolutions and chain resolutions

One of our motivations for introducing crossed complexes was that they enable us to model more
of the sort of information encoded in a K(G, 1) than does the usual standard algebraic models,
e.g. a chain complex such as the bar resolution. In particular, whilst the bar resolution is very
good for cohomology with Abelian coefficients for non-Abelian cohomology the crossed version can
allow us to push things further, but then comparison on the Abelian theory is very necessary! It is
therefore of importance to see how this K(G, 1) information that we have encoded changes under
the functor ξ : Crs→ Ch(G−Mod).

We start with a crossed resolution determined in low dimensions by a presentation P = (X : R)
of a group, G. Thus, in this case, C0 = F (X) with ϕ : F (X) → G, the ‘usual’ epimorphism, and
C1 → C0 is C → F (X), the free crossed module on R → F (X). It is not too hard to show that
CAb1

∼= Z[G](R), the free Z[G]-module on R. (The proof is left as an exercise.) This maps down
onto N(R)Ab, the Abelianisation of the normal closure of R in F (X) via a map

∂∗ : Z[G](R) → N(R)Ab,

given by ∂∗(er) = r[N(R), N(R)], where er is the generator of Z[G] corresponding to r ∈ R.
There is also a short exact sequence

1→ N(R)
i→ F (X)

ϕ→ G→ 1

and hence by Proposition 10, a short exact sequence

0→ N(R)Ab
ĩ→ Z[G]⊗F I(F )

ϕ̃→ I(G)→ 0

(where we have written F = F (X)).
By the Corollary to Proposition 8, we have

Z[G]⊗F I(F ) ∼= Z[G](X).
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The required map CAb1 → Dϕ is the composite

Z[G](R) ∂∗→ N(R)Ab
ĩ→ Z[G](X).

We have given an explicit description of ∂∗ above, so to complete the description of d, it remains to
describe ĩ, but ĩ satisfies ĩδ = ∂ϕi, where δ : N(R)→ N(R)Ab, so ĩ(r[N(R), N(R)]) = dϕ(r). Thus
if r is a relator, i.e., if it is in the image of the subgroup generated by the elements of R, then ∂(er)
can be written as a finite sum of the form

∑
x axex and the elements ax ∈ Z[G] are the images of

the Fox derivatives.
This operator can best be viewed as the Alexander matrix of a presentation of a group, further

study of this operator depends on studying transformations between free modules over group rings,
and we will not attempt to study those here.

The rest of the crossed resolution does not change and so, on replacing I(G) by Z[G]→ Z, we
obtain a free pseudocompact Z[G]-resolution of the trivial module Z,

. . .→ Z[G](R) d→ Z[G](X) → Z[G]→ Z

built up from the presentation. This is the complex of chains on the universal cover, K̃(G, 1), where
K(G, 1) is constructed starting from a presentation P.

3.4.3 Standard crossed resolutions and bar resolutions

We next turn to the special case of the standard crossed resolution of G discussed briefly earlier.
Of course this is a special case of the previous one, but it pays to examine it in detail.

Clearly in ξ = ξ(CG,ϕ), we have:
ξ0 = the free Z[G]-module on the underlying set of G, individual generators being written [u], for
u ∈ G;
ξ1 = the free Z[G] -module on G×G, generators being written [u, v];
ξn = CnG, the free Z[G] -module on Gn+1, etc.

The map d2 : ξ2 → ξ1 induced from δ2 is given by

d2[u, v, w] = u[v, w]− [u, v]− [uv,w] + [u, vw],

and the map d1 : ξ1 → ξ0 by

d1([u, v]) = dϕ([uv]−1[u][v])

= v−1u−1(−[uv] + [u] + u[v]),

a unit times the usual bar resolution formula. Thus, as claimed earlier, the standard crossed
resolution is the crossed analogue of the bar resolution.

3.4.4 The intersection A ∩ [C,C].

We next turn to a comparison of homological and homotopical syszygies. We have almost all the
preliminary work already. The next ingredient is a result that will identify the intersection of the

kernel of a crossed module, A = Ker(C
∂→ P ) and the commutator subgroup of C.

The kernel of the homomorphism from A to CAb is, of course, A ∩ [C,C] and this need not be
trivial. In fact, Brown and Huebschmann ([32], p.160) note that in examples of type (G,Aut(G), ∂),
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the kernel of ∂ is, of course, the centre ZG of G and ZG ∩ [G,G] can be non-trivial, for instance,
if G is dicyclic or dihedral.

We will adopt the same notation as previously with N = ∂P etc.

Proposition 12 If, in the exact sequence of groups

1→ A→ C
p→ N → 1,

the epimorphism from C to N is split (the splitting need not respect G-action), then A ∩ [C,C] is
trivial.

Proof: Given a splitting s : N → C, (so ps is the identity on N), then the group C can be written
as A o s(N). The commutators in C, therefore, all lie in s(N) since A is Abelian, but then, of
course, A ∩ [C,C] cannot contain any non-trivial elements. �

We used this proposition earlier in the case where N is free. We are thus using the fact that
subgroups of free groups are free, in that case. Of course, any epimorphism with codomain a free
group is split.

Brown and Huebschmann, [32], p. 168, prove that for an group G with presentation P, the
module of identities for P is naturally isomorphic to the second homology group, H2(K̃(P)), of the
universal cover of K(P), the 2-complex of the presentation. We can approach this via the algebraic
constructions we have.

Given a presentation P = 〈X : R〉 of a group G, the algebraic analogue of K(P), we have

argued above, is the free crossed module C(P)
d→ F (X) and the chains on the universal cover of

K(P) will be given by ξG of this, i.e., by the chain complex

Z[G](R) d→ Z[G](X).

In general there will be a short exact sequence

0→ κ(P) ∩ [C(P), C(P)]→ κ(P)→ H2(ξ(C(P))→ 0.

This short exact sequence yields the Brown-Huebschmann result as N(R) will a free group so
the epimorphism onto N(R) splits and we can use the above Proposition 12. We thus get

Proposition 13 If P = 〈X : R〉 is a free presentation of G, then there is an isomorphism

κ
∼=−→ H2(ξ(CC(P)) = Ker(d : Z[G]R → Z[G]X).

�

Note: Here we are using something that will not be true in all algebraic settings. A subgroup
of a free group is always free, but the analogous statement for free algebras of other types is not
true.
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3.5 Simplicial groups and crossed complexes

3.5.1 From simplicial groups to crossed complexes

Given any simplicial group G, the formula,

C(G)n+1 =
NGn

(NGn ∩Dn)d0(NGn+1 ∩Dn+1)
,

in higher dimensions with, at its ‘bottom end’, the crossed module,

NG1

d0(NG2 ∩D2)
→ NG0

gives a crossed complex with ∂ induced from the boundary in the Moore complex. The detailed
proof is too long to indicate here. It just checks the axioms, one by one.

We should have a glance at this formula from various viewpoints, some of which will be revisited
later. Once again there is a clear link with the non-uniqueness of fillers for horns in a simplicial
group if it is not a group T -complex. We have all those (NGn ∩Dn) terms involved!

Suppose that we had our simplicial group G and wanted to construct a quotient of it that was a
group T -complex. We could do this in a silly way since the trivial simplicial group is clearly a group
T -complex, but let us keep the quotient as large as possible. This problem is related to the question
of whether the category of group T -complexes forms a reflexive subcategory of Simp.Grps. The
condition NG∩D = 1 looks like some sort of ‘equational specification’. Our question can thus really
be posed as follows: Suppose we have a simplicial group morphism f : G → H and H is a group
T -complex. Remember that in group T -complexes, as against the non-algebraic ones, the thin
structure is not an added bit of structure. The thin elements are determined by the degeneracies,
so whether or not H is or is not a group T -complex is somehow its own affair, and nothing to do
with any external factors! Does f factor universally through some ‘group T -complexification’ of
G? Something like

G
f //

proj ��;;;;;;; H

G/T (G)
f̂

AA�������

with G/T (G) a group T -complex and f̂ uniquely determined by the diagram.
One sensible way to look at such a question is to assume, provisionally, that such a factorisation

exists and to see what T (G) would have to be. In general, if f : G → H is any simplicial group
morphism (with no restriction on H for the moment), then with a hopefully obvious notation,

fn(NGn ∩D(G)n) ⊆ NHn ∩D(H)n,

since f sends degenerate elements to degenerate elements and preserves products! Back in our
situation in which H is a group T -complex, then fn(NGn ∩D(G)n) = 1, for the simple reason that
the right hand side of that displayed formula is trivial by assumption. We thus have that if some
such T (G) exists, then we must have NGn ∩ D(G)n ⊆ T (G)n and our first attempt might be to
look at the possibility that they should be equal. This is wrong and for fairly trivial reasons. The
subgroup T (G)n of Gn has to be normal if we are to form the quotient by it, and there is no reason
why NGn ∩D(G)n should be a normal subgroup in general.
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We might then be tempted to take the normal subgroup generated by NGn ∩D(G)n, but that
is ‘defeatist’ in this situation. We might hope to do detailed calculations with the subgroup and
if it is specified as a normal closure, we will lose some of our ability to do that, at least without
considerable more effort. (Let’s be lazy and see if we can get around that difficulty.) If we look
again, we find another thing that ‘goes wrong’ with any attempt to use NGn∩D(G)n as it is. This
subgroup would be within NGn, of course, and we want to induce a map from the Moore complex
of G to that of G/T (G). For that to work, we would need not only NGn ∩D(G)n ⊆ T (G)n, but
the image of NGn ∩D(G)n under d0 to be in T (G)n−1. Going up a dimension, we thus need not
only NGn ∩ D(G)n, but d0(NGn+1 ∩ D(G)n+1) ⊆ T (G)n. We thus need the product subgroup
(NGn ∩D(G)n)d0(NGn+1 ∩D(G)n+1) to be in T (G)n. This looks a bit complicated. Do we need
to go any further up the Moore complex? No, because d0d0 is trivial. We might thus try

T (G)n = (NGn ∩D(G)n)d0(NGn+1 ∩D(G)n+1)

You might now think that this is a bit silly because we would still need this product subgroup to
be normal in order to form the quotient ... , but it is! The lack of normality of our earlier attempt
is absorbed by the image of the next level up. (That is pretty!)

Of course, there are very good reasons why this works. These involve what are sometimes called
Peiffer pairings. We will see some of these later.

As a consequence of the above discussion, we more or less have:

Proposition 14 If G is a group T -complex, then NG is a crossed complex. �

We certainly have a sketch of

Proposition 15 The full subcategory of Simp.Grps determined by the group T -complexes is a
reflective subcategory. �

Of course, the details of the proofs of both of these are left for you to write down. Nearly all of the
reasoning for the second result is there for you, but some of the detailed calculations for the first
are quite tricky.

The close link between group T -complexes and crossed complexes is evident from these results.
You might guess that they form equivalent categories. They do. We will look at the way back from
crossed complexes (of groups) to simplicial groups later on, but we need to get back to cohomology.

3.5.2 Simplicial resolutions, a bit of background

We need some such means of going from simplicial groups to crossed complexes so because we can
also use simplicial resolutions to ‘resolve’ a group (and in many other situations). We first sketch
in some historical background.

In the 1960s, the connection between simplicial groups and cohomology was examined in detail.
The basic idea was that given the adjoint “free-forget” pair of functors between Groups and Sets,
one could generate a free resolution of a group, G, using the resulting comonad (or cotriple) (cf.
MacLane, [92]). This resolution was not, however, by a chain complex but by a free simplicial
group, F , say. It was then shown (Barr and Beck, [11]) that given any G-module, M , and working
in the category of groups over G, one could form the cosimplicial G-module, HomGps/G(F,M),
and hence, by a dual form of the Dold-Kan theorem, a cochain complex C(G,M), whose homotopy
type, and hence whose homology, was independent of the choice of F . This homology was the usual
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Eilenberg-MacLane cohomology of G with coefficients in M , but with a shift in dimension (cf. Barr
and Beck, [11]).

Other theories of cohomology were developed at about the same time by Grothendieck and
Verdier, [5], André, [3, 4], and Quillen, [113, 114]. The first of these was designed for use with
“sites”, that is, categories together with a Grothendieck topology.

André and Quillen developed, independently, a method of defining cohomology using simplicial
resolutions. Their work is best known in commutative algebra, but their methods work in greater
generality. Unlike the theory of Barr and Beck (monadic cohomology), they only assume there
is enough structure to construct free resolutions; a (co)monad is just one way of doing this. In
particular, André, [3, 4], describes a step-by-step, almost combinatorial, process for constructing
such resolutions. This ties in well with our earlier comments about using a presentation of a group
to construct a crossed resolution and the important link with syzygies. André’s method is the
simplicial analogue of this.

We will assume for the moment that we have a simplicial resolution, F , of our group, G.
Both André and Quillen then consider applying a derived module construction dimensionwise to
F , obtaining a simplicial G-module. They then use “Dold-Kan” to give a chain complex of G-
modules, which they call the “cotangent complex”, denoted LG or LAb(G), of G (at least in the
case of commutative algebras). The homotopy type of LAb(G) does not depend on the choice of
resolution and so is a useful invariant of G. We will need to look at this construction in more detail,
but will consider a slightly more general situation to start with.

3.5.3 Free simplicial resolutions

Standard theory (cf. Duskin, [56]) shows that if F and F ′ are free simplicial resolutions of groups,
G and H, say, and f : G → H is a morphism, then f can be lifted to f ′ : F → F ′. The method
is the simplicial analogue of lifting a homomorphism of modules to a map of resolutions of those
modules, which you should look at first as it is technically simpler. Any two such lifts are homotopic
(by a simplicial homotopy).

Of course, f will also lift to a morphism of crossed complexes, f : C(F ) → C(F ′), and any
two such lifts will be homotopic as crossed complex morphisms. Thus whatever simplicial lift,
f ′ : F → F ′, we choose, C(f ′) will be a lift in the “crossed” case, and although we do not know at
this stage of our discussion of the theory if a homotopy between two simplicial lifts is transferred
to a homotopy between the images under C, this does not matter as the relation of homotopy is
preserved at least in this case of resolutions.

Any group has a free simplicial resolution. There is the obvious adjoint pair of functors

U : Groups→ Sets

F : Sets→ Groups

Writing η : Id → UF and ε : FU → Id for the unit and counit of this adjunction (cf. MacLane,
[92, 93]), we have a comonad (or cotriple) on Groups, the free group comonad, (FU, ε, FηU). We
write L = FU , δ = FηU , so that

ε : L→ I

is the counit of the comonad whilst

δ : L→ L2
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is the comultiplication. (For the reader who has not met monads or comonads before, (L, η, δ)
behaves as if it was a monoid in the dual of the category of “endofunctors” on Groups, see MacLane,
[93] Chapter VI. We will explore them briefly in section ??, starting on page ??.)

Now suppose G is a group and set F (G)i = Li+1(G), so that F (G)0 is the free group on the
underlying set of G and so on. The counit (which is just the augmentation morphism from FU(G)
to G) gives, in each dimension, face morphisms

di = Ln−iεLi(G) : Ln+1(G)→ Ln(G),

for i = 0, . . . , n, whilst the comultiplication gives degeneracies

si : Ln(G)→ Ln+1(G)

si = Ln−1−iδLi,

for i = 0, . . . , n− 1, satisfying the simplicial identities.

Remark: Here we follow the conventions used by Duskin, in his Memoir, [56]. Later we will also
need to look at similar resolutions where the labelling of the faces and degeneracies are reversed.

This simplicial group, F (G), satisfies π0(F (G)) ∼= G (the isomorphism being induced by ε(G) :
F0(G) → G) and πn(F (G)) is trivial if n ≥ 1. The reason for this is simple. If we apply U once
more to F (G), we get a simplicial set and the unit of the adjunction

η : 1→ UF

allows one to define for each n

ηU(FU)n : ULn → ULn+1,

which gives a natural contraction of the augmented simplicial set, UF (G) → U(G), (cf. Duskin,
[56]). We will look at this in detail in our later treatment of augmentations, etc. For the moment,
it suffices to accept the fact that we do get a resolution, as we do not need to know the details of
why this construction works, at least not yet.

If we denote the constant simplicial group on G by K(G, 0), the augmentation defines a simplical
homomorphism

ε : F (G)→ K(G, 0)

satisfying Uε.inc = Id, where inc : UK(G, 0)→ UF (G) is the ‘inclusion’ of simplicial sets given by
η, and then these extra maps, (UF )nηU , in fact, give a homotopy between inc.Uε and the identity
map on UF (G), i.e., ε is a weak homotopy equivalence of simplicial groups. Thus F (G) is a free
simplicial resolution of G. It is called the comonadic free simplicial resolution of G.

This simplicial resolution has the advantage of being functorial, but the disadvantage of being
very big. We turn next to a ‘step-by-step’ method of constructing a simplicial resolution using
ideas pioneered by André, [4], although most of his work was directed more towards commutative
algebras, cf. [3].
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3.5.4 Step-by-Step Constructions

This section is a brief résumé of how to construct simplicial resolutions by hand rather than
functorially. This allows a better interpretation of the generators in each level of the resolution.
These are the simplicial analogues of higher syzygies. The work depends heavily on a variety of
sources, mainly [3], [86] and [101]. André only treats commutative algebras in detail, but Keune
[86] does discuss the general case quite clearly. The treatment here is adapted from the paper by
Mutlu and Porter, [102].

Recall of notation: We first recall some notation and terminology, which will be used in the
construction of a simplicial resolution. Let [n] be the ordered set, [n] = {0 < 1 < · · · < n}. Define
the following maps: the injective monotone map δni : [n− 1]→ [n] is given by

δni (k) =

{
k if k < i,
k + 1 if k ≥ i,

for 0 ≤ i ≤ n 6= 0. The increasing surjective monotone map αni : [n+ 1]→ [n] is given by

αni (k) =

{
k if k ≤ i,
k − 1 if k > i,

for 0 ≤ i ≤ n. We denote by {m,n} the set of increasing surjective maps [m]→ [n].

3.5.5 Killing Elements in Homotopy Groups

Let G be a simplicial group and let k ≥ 1 be fixed. Suppose we are given a set, Ω, of elements:
Ω = {xλ : λ ∈ Λ}, xλ ∈ πk−1(G), then we can choose a corresponding set of elements θλ ∈ NGk−1 so
that xλ = θλ ∂k(NGk). (If k = 1, then as NG0 = G0, the condition that θλ ∈ NG0 is immediate.)
We want to ‘kill’ the elements in Ω.

We form a new simplicial group Fn where
1) Fn is the free Gn-group, (i.e., group with Gn-action)

Fn =
∐
λ,t

Gn{yλ,t} with λ ∈ Λ and t ∈ {n, k},

where Gn{y} = Gn∗ < y >, the co-product of Gn and a free group generated by y.
2) For 0 ≤ i ≤ n, the group homomorphism sni : Fn → Fn+1 is obtained from the homomorphism

sni : Gn → Gn+1 with the relations

sni (yλ,t) = yλ,u with u = tαni , t : [n]→ [k].

3) For 0 ≤ i ≤ n 6= 0, the group homomorphism dni : Fn → Fn−1 is obtained from dni : Gn →
Gn−1 with the relations

dni (yλ,t) =


yλ,u if the map u = tδni is surjective,
t′(θλ) if u = δkkt

′,
1 if u = δkj t

′ with j 6= k,

by extending multiplicatively.
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We sometimes denote the F, so constructed by G(Ω).

Remark: In a ‘step-by-step’ construction of a simplicial resolution, (see below), there will
thus be the following properties: i) Fn = Gn for n < k, ii) Fk = a free Gk-group over a set of
non-degenerate indeterminates, all of whose faces are the identity except the kth, and iii) Fn is a
free Gn-group on some degenerate elements for n > k.

We have immediately the following result, as expected.

Proposition 16 The inclusion of simplicial groups G ↪→ F , where F = G(Ω), induces a homo-
morphism

πn(G) −→ πn(F )

for each n, which for n < k − 1 is an isomorphism,

πn(G) ∼= πn(F )

and for n = k−1, is an epimorphism with kernel generated by elements of the form θ̄λ = θλ∂kNGk,
where Ω = {xλ : λ ∈ Λ}. �

3.5.6 Constructing Simplicial Resolutions

The following result is essentially due to André, [3].

Theorem 4 If G is a group, then it has a free simplicial resolution F.

Proof: The repetition of the above construction will give us the simplicial resolution of a group.
Although ‘well known’, we sketch the construction so as to establish some notation and terminology.

Let G be a group. The zero step of the construction consists of a choice of a free group F and
a surjection g : F → G which gives an isomorphism F/Ker g ∼= G as groups. Then we form the
constant simplicial group, F (0), for which in every degree n, Fn = F and dni = id = snj for all i, j.

Thus F (0) = K(F, 0) and π0(F (0)) = F. Now choose a set, Ω0, of normal generators of the closed

normal subgroup N = Ker (F
g−→ G), and obtain the simplicial group in which F

(1)
1 = F (Ω0) and

for n > 1, F
(1)
n is a free Fn-group over the degenerate elements as above. This simplicial group will

be denoted by F (1) and will be called the 1-skeleton of a simplicial resolution of the group G.
The subsequent steps depend on the choice of sets, Ω0, Ω1,Ω2, . . . ,Ωk, . . . . Let F (k) be the

simplicial group constructed after k steps, that is, the k-skeleton of the resolution. The set Ωk is

formed by elements a of F
(k)
k with dki (a) = 1 for 0 ≤ i ≤ k and whose images ā in πk(F

(k)) generate

that module over F
(k)
k and F (k+1).

Finally we have inclusions of simplicial groups

F (0) ⊆ F (1) ⊆ · · · ⊆ F (k−1) ⊆ F (k) ⊆ · · ·

and in passing to the inductive limit (colimit), we obtain an acyclic free simplicial group F with

Fn = F
(k)
n if n ≤ k. This F , or, more exactly, (F, g), is thus a simplicial resolution of the group G.

The proof of theorem is completed. �

Remark: A variant of the ‘step-by-step’ construction gives: if G is a simplicial group, then
there exists a free simplicial group F and a continuous epimorphism F −→ G which induces iso-
morphisms on all homotopy groups. The details are omitted as they should be reasonably clear.
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The key observation, which follows from the universal property of the construction, is a freeness
statement:

Proposition 17 Let F (k) be a k-skeleton of a simplicial resolution of G and (Ωk, g(k)) k-dimension
construction data for F (k+1). Suppose given a simplicial group morphism Θ : F (k) −→ G such that
Θ∗(g

(k)) = 0, then Θ extends over F (k+1).

This freeness statement does not contain a uniqueness clause. That can be achieved by choosing
a lift for Θkg

(k) to NGk+1, a lift that must exist since Θ∗(πk(F
(k))) is trivial.

When handling combinatorially defined resolutions, rather than functorially defined ones, this
proposition is as often as close to ‘left adjointness’ as is possible without entering the realm of
homotopical algebra to an extent greater than is desirable for us here.

We have not talked here about the homotopy of simplicial group morphisms, and so will not dis-
cuss homotopy invariance of this construction for which one adapts the description given by André,
[3], or Keune, [86]. Of course, the resolution one builds by any means would be homotopicallly
equivalent to any other so, for cohomological purposes, it makes no difference how the resolution
is built.

Of course, from any simplicial resolution F of G, you can get an augmented crossed complex
C(F ) over G using the formula given earlier and this is a crossed resolution.

3.6 Cohomology and crossed extensions

3.6.1 Cochains

Consider a G-module, M , and a non-negative integer n. We can form the chain complex, K(M,n),
having M in dimension n and zeroes elsewhere. We can also form a crossed complex, K(M,n),
that plays the role of the nth Eilenberg-MacLane space of M in this setting. We may call it the
nth Eilenberg-MacLane crossed complex of M :

If n = 0, K(M,n)0 = M oG, K(M,n)i = 0, i > 0.

If n ≥ 1, K(M,n)0 = G, K(M,n)n = M , K(M,n)i = 0, i 6= 0 or n.

One way to view cochains is as chain complex morphisms. Thus on looking at Ch(BG,K(M,n)),
one finds exactly Zn+1(G,M), the (n+ 1)-cocycles of the cochain complex C(G,M). We can also
view Zn+1(G,M) as CrsG(CG,K(M,n)).

In the category of chain complexes, one has that a homotopy from BG to K(M,n) between
0 and f , say, is merely a coboundary, so that Hn+1(G,M) ∼= [BG,K(M,n)], adopting the usual
homotopical notation for the group of homotopy classes of maps from the bar resolution BG to
K(M,n). This description has its analogue in the crossed complex case as we shall see.

3.6.2 Homotopies

Let C, C′ be two crossed complexes with Q and Q′ respectively as the cokernels of their bottom
morphism. Suppose λ, µ : C→ C′ are two morphisms inducing the same map ϕ : Q→ Q′.

A homotopy from λ to µ is a family, h = {hk : k ≥ 1}, of maps hk : Ck → C ′k+1 satisfying the
following conditions:

H1) h0 : C1 → C ′2 is a derivation along µ0 (i.e. for x, y ∈ C0,

h0(xy) = h0(x)(µ0h0(y)), )
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such that
δ1h0(x) = λ0(x)µ0(x)−1, x ∈ C0.

H2) h1 : C1 → C ′2 is a C0-homomorphism with C0 acting on C ′2 via λ0 (or via µ0, it makes no
difference) such that

δ2h1(x) = µ1(x)−1(h0δ1(x)−1λ1(x)) for x ∈ C1.

H3) for k ≥ 2, hk is a Q-homomorphism (with Q acting on the C ′k via the induced map
ϕ : Q→ Q′) such that

δk+1hk + hk−1δk = λk − µk.

We note that the condition that λ and µ induce the same map, ϕ : Q→ Q′, is, in fact, superfluous
as this is implied by H1.

The properties of homotopies and the relation of homotopy are as one would expect. One finds
Hn+1(G,M) ∼= [CG,K(M,n)]. Given that in higher dimensions, this is the same set exactly as
[BG,K(M,n)] means that there is not much to check and so the proof has been omitted.

3.6.3 Huebschmann’s description of cohomology classes

The transition from this position to obtaining Huebschmann’s descriptions of cohomology classes,
[77], is now more or less formal. We will, therefore, only sketch the main points.

If G is a group, M is a G-module and n ≥ 1, a crossed n-fold extension is an exact augmented
crossed complex,

0→M → Cn → . . .→ C2 → C1 → G→ 1.

The notion of similarity of such extensions is analogous to that of n-fold extensions in the Abelian
Yoneda theory, (cf. MacLane, [92]), as is the definition of a Baer sum. We leave the details to you.
This yields an Abelian group, Opextn(G,M), of similarity classes of crossed n-fold extensions of G
by M .

Given a cohomology class in Hn+1(G,M) realisable as a homotopy class of maps, f : CG →
K(M,n), one uses f to form an induced crossed complex, much as in the Abelian Yoneda theory:

Jn(G) //

f ′ pushout

��

Cn //

��

. . . // C1
//

��

G

0 //M //Mn
// . . . //M1

// G

where Jn(G) is Ker(CnG → Cn−1G). (Thus JnG is also Im(Cn+1G → CnG) and as the map f
satisfies fδ = 0, it is zero on the subgroup δ(Cn+2G) (i.e. is constant on the cosets) and hence passes
to Im(Cn+1G → CnG) in a well defined way.) Arguments using lifting of maps and homotopies
show that the assignment of this element of Opextn(G,M) to cls(f) ∈ Hn+1(G,M) establishes an
isomorphism between these groups.

3.6.4 Abstract Kernels.

The importance of having such a description of classes in Hn(G,M) probably resides in low di-
mensions. To describe classes in H3(G,M), one has, as before, crossed 2-fold extensions

0→M → C2
∂→ C1 → G→ 1,
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where ∂ is a crossed module. One has for any group G, a crossed 2-fold extension

0→ Z(G)→ G
∂G→ Aut(G)→ Out(G)→ 1

where ∂G sends g ∈ G to the corresponding inner automorphism of G. An abstract kernel (in the
sense of Eilenberg-MacLane, [61]) is a homomorphism ψ : Q → Out(G) and hence provides, by
pulling back, a 2-fold extension of Q by the centre, Z(G), of G.

3.7 2-types and cohomology

In classifying homotopy types and in obstruction theory, one frequently has invariants that are
elements in cohomology groups of the form Hm(X,π), where typically π is the nth homotopy group
of some space. When dealing with homotopy types, π will be a group, usually Abelian with a π1-
action, i.e., we are exactly in the situation described earlier, except that X is a homotopy type not
a group. Of course, provided that X is connected, we can replace X by a simplicial group, bringing
us even nearer to the situation of this section. We shall work within the category of simplicial
groups.

3.7.1 2-types

A morphism

f : G→ H

of simplicial groups is called a 2-equivalence if it induces isomorphisms

π0(f) : π0(G)→ π0(H, )

and

π1(f) : π1(G)→ π1(H).

We can form a quotient category, Ho2(Simp.Grps), of Simp.Grps by formally inverting the
2-equivalences, then we say two simplicial groups, G and H, have the same 2-type, (or, more
exactly, homotopy 2-type), if they are isomorphic in Ho2(Simp.Grps).

This is, of course, just a special case of the general notion of n-type in which “n-equivalences”
are inverted, thus forming the quotient category Hon(Simp.Grps).

We recall the following from earlier:

Definition: An n-equivalence is a morphism, f , of simplicial groups (or groupoids) inducing
isomorphisms, πi(f), for i = 0, 1, . . . , n− 1.

Definition: Two simplicial groups, G and H, have the same n-type (or, more exactly, homotopy
n-type if they are isomorphic in Hon(Simp.Grps).

Sometimes it is convenient to say that a simplicial group, G, is an n-type. This is taken to mean
that it represents an n-equivalence class and has zero homotopy groups above dimension n− 1.
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3.7.2 Example: 1-types

Before examining 2-types in detail, it will pay to think about 1-types. A morphism f as above is
a 1-equivalence if it induces an isomorphism on π0, i.e., π0(f) is an isomorphism. Given any group
G, there is a simplicial group, K(G, 0) consisting of G in each dimension with face and degeneracy
maps all being identities. Given a simplicial group, H, having G ∼= π0(H), the natural quotient
map

H0 → π0(H) ∼= G,

extends to a natural 1-equivalence between H and K(π0(H), 0).
It is fairly routine to check that

π0 : Simp.Grps→ Grps

has K(−, 0) as an adjoint and that, as the unit is a natural 1-equivalence, and the counit an
isomorphism, this adjoint pair induces an equivalence between the category Ho1(Simp.Grps) of
1-types and the category, Grps, of groups. In other words,

groups are algebraic models for 1-types.

3.7.3 Algebraic models for n-types?

So much for 1-types. Can one provide algebraic models for 2-types or, in general, n-types? We
touched on this earlier. The criteria that any such “models” might satisfy are debatable. Perhaps
ideally, or even unrealistically, there should be an isomorphism class of algebraic “gadgets” for each
2-type. An alternative weaker solution is to ask that a notion of equivalence between the models
is possible, and that only equivalence classes, not isomorphism classes, correspond to 2-types, but,
in addition, the notion of equivalence is algebraically defined. It is this weaker possibility that
corresponds to our aim here.

3.7.4 Algebraic models for 2-types.

If G is a simplicial group, then we can form a crossed module

∂ :
NG1

d0(NG2)
→ G0,

where the action of G0 is via the degeneracy, s0 : G0 → G1, and ∂ is induced by d0. (As before we
will denote this crossed module by M(G, 1).) The kernel of ∂ is

Ker d0 ∩Ker d1

d0(NG2)
∼= π1(G),

whilst its cokernel is
G0

d0(NG1)
∼= π0(G),

and so we have a crossed 2-fold extension

0→ π1(G)→ NG1

d0(NG2)
→ G0 → π0(G)→ 1

and hence a cohomology class k(G) ∈ H3(π0(G), π1(G)).
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Suppose now that f : G → H is a morphism of simplicial groups, then one obtains a commu-
tative diagram

0 // π1(G) //

π1(f)

��

NG1
d0(NG2)

//

��

G0
//

f0

��

π0(G) //

π0(f)

��

1

0 // π1(H) // NH1
d0(NH2)

// H0
// π0(H) // 1

If, therefore, f is a 2-equivalence, π0(f) and π1(f) will be isomorphisms and the diagram shows
that, modulo these isomorphisms, k(G) and k(H) are the same cohomology class, i.e. the 2-type
of G determines π0, π1 and this cohomology class, k in H3(π0, π1).

Conversely, suppose we are given a group π, a π-module, M , and a cohomology class k ∈
H3(π,M), then we can realise k by a 2-fold extension

0→M → C
∂→ G→ π → 1

as above.
The crossed module, C = (C,G, ∂), determines a simplicial group K(C) as follows:
Suppose C = (C,P, ∂) is any crossed module, we construct a simplicial group, K(C), by

K(C)0 = P, K(C)1 = C o P,

s0(p) = (1, p), d1
0(c, p) = ∂c.p, d1

1(c, p) = p.

Assuming K(C)n is defined and that it acts on C via the unique composed face map to K(C)0 = P
followed by the given action of P on C, we set

K(C)n+1 = C oK(C)n;

dn+1
0 (cn+1, . . . , c1, p) = (cn+1, ..., c2, ∂c1.p);

dn+1
i (cn+1, . . . , ci+1, ci, . . . , c1, p) = (cn+1, . . . , ci+1ci, . . . c1, p)

for 0 < i < n+ 1;

dn+1
n+1(cn+1, . . . , c1, p) = (cn, . . . , c1, p);

sni (cn, . . . , c1, p) = (cn, . . . , 1, . . . , c1, p),

where the 1 is placed in the ith position.
Clearly Ker d1

1 = {(c, p) : p = 1} ∼= C, whilst Ker d2
1 ∩ Ker d2

2 = {(c2, c1, p) : (c1, p) =
(1, 1) and (c2c1, p) = (1, 1)} ∼= {1}, hence the “top term” of M(K(C), 1) is isomorphic to C
itself, whilst K(C)0 is P itself. The boundary map ∂ in this interpretation is the original ∂, since
it maps (c, 1) to d0(c), i.e., we have

Lemma 14 There is a natural isomorphism

C ∼= M(K(C), 1).

�

This construction is the internal nerve of the corresponding internal category in Grps, as we
noted earlier. All the ideas that go into defining the nerve of a category adapt to handling internal
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categories, and they produce simplicial objects in the corresponding ambient category. As we have a
simplicial group K(C), we might check if it is a group T -complex, but this is more or less immediate
as NK(C)n = 1 for n ≥ 2, whilst NK(C)1 is {(c, p) : p = 1} and s0(K(C)0 = {(c, p) : c = 1}.

Suppose now that we had chosen an equivalent 2-fold extension

0→M → C ′
d′→ G′ → π → 1

The equivalence guarantees that there is a zig-zag of maps of 2-fold extensions joining it to that
considered earlier. We need only look at the case of a direct basic equivalence:

0 //M //

=

��

C
∂ //

��

G //

��

π //

=

��

1

0 //M // C ′
∂′ // G′ // π // 1

giving a map of crossed modules, ϕ : C→ C′, where C′ = (C ′, G′, ∂′). This induces a morphism of
simplicial groups,

K(ϕ) : K(C)→ K(C′),

that is, of course, a 2-equivalence. If there is a longer zig-zag between C and C′, then the in-
termediate crossed modules give intermediate simplicial groups and a zig-zag of 2-equivalences so
that K(C) and K(C′) are isomorphic in Ho2(Simp.Grps), i.e. they have the same 2-type. This
argument can, of course, be reversed.

If G and H have the same 2-type, they are isomorphic within the category Ho2(Simp.Grps),
so they are linked in Simp.Grps by a zig-zag of 2-equivalences, hence the corresponding coho-
mology classes in H3(π0(G), π1(G)) are the same up to identification of H3(π0(G), π1(G)) and
H3(π0(H), π1(H)). This proves the simplicial group analogue of the result of MacLane and White-
head, [95], that we mentioned earlier, giving an algebraic model for 2-types of connected CW-
complexes.

Theorem 5 (MacLane and Whitehead, [95]) 2-types are classified by a group π0, a π0-module, π1

and a class in H3(π0, π1). �

We have handled this in such a way so as to derive an equivalence of categories:

Proposition 18 There is an equivalence of categories,

Ho2(Simp.Grps) ∼= Ho(CMod),

where Ho(CMod) is formed from CMod by formally inverting those maps of crossed modules that
induce isomorphisms on both the kernels and the cokernels. �

3.8 Re-examining group cohomology with Abelian coefficients

3.8.1 Interpreting group cohomology

We have had



88 CHAPTER 3. CROSSED COMPLEXES

• A definition of group cohomology via the bar resolution: for a group G and a G-module, M :

Hn(G,M) = Hn(C(G,M))

together with an identification of C(G,M) with maps from the classifying space / nerve, BG,
of G to M , up to shifts in dimension;

• Interpretations

H0(G,M) ∼= MG, the module of invariants

H1(G,M) ∼= Der(G,M)/Pder(G,M)

− by inspection, where Pder(G,M) is the submodule of

principal derivations;

H2(G,M) ∼= Opext(G,M), i.e. classes of extensions

0→M → H → G→ 1

and we also have

Hn(G,M) ∼= Opextn(G,M), n ≥ 2, via crossed resolutions
∼= [C(G),K(M,n)]

Another interpretation, which will be looked at shortly is as Extn(Z,M), where Z is given the
trivial G-module structure. This leads to

Hn(G,M) ∼= Extn−1(I(G),M),

via the long exact sequence coming from

0→ I(G)→ Z[G]→ Z→ 0.

3.8.2 The Ext long exact sequences

There are several different ways of examining the long exact sequence that we need. We will use
fairly elementary methods rather than more ‘homologically intensive’ one. These latter ones are
very elegant and very powerful, but do need a certain amount of development before being used.
The more elementary ones have, though, a hidden advantage. The intuitions that they exploit
are often related to ones that extend, at least partially, to the non-Abelian case and also to the
geometric situations that will be studied later in the notes.

The idea is to explore what happens to an exact sequence of modules

E : 0→ A
α→ B

β→ C → 0

over some given ring (we need it for G-modules so there the ring is Z[G], the group ring of G),
when we apply the functor Hom(−,M) for M another module. Of course one gets a sequence

Hom(E ,M) : 0→ Hom(C,M)
β∗→ Hom(B,M)

α∗→ Hom(A,M)

and it is easy to check that this is exact, but there is no reason why α∗ should be onto since a
morphism f : A → M may or may not extend to some g defined over the bigger module B. For
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instance, if M = A, and f is the identity morphism, then f extends if and only if the sequence
splits (so B ∼= A⊕ C). We examine this more closely.

We have

0 // A
α //

f
��

B
β // C // 0

M

and can form a new diagram

0 // A
α //

f

��

B
β //

f
��

C //

=

��

0

0 //M
α // N

β // C // 0

where the left hand square is a pushout. You should check that you see why there is an induced
morphism β : N → C ‘emphusing the universal property of pushouts. (This is important as
sometimes one wants this sort of construction, or argument, for sheaves of modules and there
working with elements causes some slight difficulties.) The existence of this map is guaranteed
by the universal property and does not depend on a particular construction of N . Of course this
means that the bottom line is defined only up to isomorphism although we can give a very natural
explicit model for N, namely it can be represented as the quotient of B ⊕M by the submodule
L of elements of the form (α(a),−f(a)) for a ∈ A. Then we have β(b,m) = β(b). (Check it is
well defined.) It is also useful to have the corresponding formulae for α(m) = (0,m) + L and for
f(b) = (b, 0) + L. This gives an extension of modules

f∗(E) : 0→M
α→ N

β→ C → 0.

If f extends over B to give g, so gα = f , then we have a morphism g′ : N → M given by
g′((m, b) + L) = m+ g(b). (Check that g′ is well defined.)

Lemma 15 f extends over B if and only if f∗(E) is a split extension.

Proof: We have done the ‘only if’. If f∗(E) is split, there is a projection g′ : N → M such that
g′α(m) = m for all m. Define g = g′f to get the extension. �

We thus get a map

Hom(A,M)
δ→ Ext1(C,M)

δ(f) = [f∗(E)]

which extends the exact sequence one step to the right.
Here it is convenient to define Ext1(C,M) to be the set (actually Abelian group) of extensions

of form

0→M →?→ C → 0

modulo equivalence (isomorphism of middle terms with the ends fixed). The Abelian group struc-
ture is given by Baer sum (see entry in Wikipedia, or many standard texts on homological algebra).
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Important aside: ‘Recall’ the ‘snake lemma: given a commutative diagram of modules with
exact rows

0 //M //

µ

��

N //

ν

��

P //

ψ
��

0

0 //M ′ // N ′ // P ′ // 0

there is an exact sequence

0→ Ker µ→ Ker ν → Ker ψ
δ→ Coker µ→ Coker ν → Coker ψ → 0

This has as a corollary that if µ and ψ are isomorphisms then so is ν. (Do check that you can
construct δ and prove exactness, i.e. using a simple diagram chase.)

Back to extensions: It is fairly easy to show that Hom(E ,M) extends even further to 6 terms
with

. . .
β∗→ Ext1(B,M)

α∗→ Ext1(A,M)

Here is how α∗ is constructed. Suppose E1 : 0 → M → N → B → 0 gives an element of
Ext1(B,M), then we can form a diagram

α∗(E1) : 0 //M //

=

��

α−1(N)
p′ //

α′

��

A

α

��

// 0

E1 : 0 //M // N p
// B // 0

by restricting E1 along α using a pull back in the right hand square. We can give α−1(N) explicitly
in the form that the usual construction of pullbacks in categories of modules gives it to us

α−1(N) ∼= {(a, n) | α(a) = p(n)}

and p′ and α′ are projections. The construction of β∗ is done similarly using pullback along β. It is
then easy to check that the obvious extension to Hom(E ,M), mentioned above, is exact, but that
there is again no reason why α∗ should be onto. (Of course, knowledge of the purely homological
way of getting these exact sequence will suggest that there is an Ext2(C,M) term to come.)

We examine an obstruction to it being so. Suppose given E ′ : 0 → M → N1
p′→ A → 0, giving

us an element of Ext′(A,M). If α∗ were onto, we would need a E1 : 0 → M → N → B → 0 such
that α−1(N) ∼= N1 leaving M fixed and relating to α as above by a pullback. We can splice E ′ and
E1 together to get a suitable looking diagram

E ′ ∗ E1 : 0 //M // N ′ //

p′
��?? B // C // 0

A
α
AA��

and the row is exact. If we change E ′ by an isomorphism than clearly this spliced sequence would
react accordingly. If you check up, as suggested, on the Baer sum structure if Ext1(A,M) and
Ext2(C,M) then you can again check that the above splicing construction yields a homomorphism
from the first group to the second. Moreover there is no reason not to extend the splicing con-
struction to a pairing operation on the whole graded family of Ext-groups. This is given in detail
in quite a few of the standard books on Homological Algebra, so will not be gone into here.
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Two facts we do need to have available are about the structure of Ext2(C,M). Let Ext2(C,M)
be the category of 4-term exact sequences

0→M → N → P → C → 0

and morphisms which are commuting diagrams

0 //M //

=

��

N //

��

P

��

// C

=

��

// 0

0 //M // N ′ // P ′ // C // 0

,

then Ext2(C,M) is the set of connected components of this category. The important thing to note
is that the morphisms are not isomorphisms in general, so two 4-term sequences give the same
element in Ext2(C,M) if they are linked by a zig-zag of intermediate terms of this form. The
second fact is that the zero for the Baer sum addition is the class of the 4-term extension

0→M →M
0→ C → C → 0

with ‘equals’ on the unmarked maps.

Suppose now that the top row in

0 //M //

=

��

N1
p //

α′

��

A

α

��

// 0

0 //M // N p
// B // 0

is obtained by restriction along α from the bottom row. We now form the spliced sequence

0→M → N1
αp→ B → C → 0.

We would hope that this 4-term sequence was trivial, i.e. equivalence to the zero one. We clearly
must use the given element in Ext1(B,M) in a constructive way in the proof that it is trivial, so
we form the pushout of αp along α′ getting us a diagram

0 //M //

=

��

N1
αp //

α′

��

B

��

// C

=

��

// 0

0 //M // N // B′ // C // 0

,

with the middle square a pushout. It is now almost immediate that the morphism from B to B′ is
split, since we can form a commutative square

N1
αp //

α′

��

B

=

��
N p

// B
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giving us the required splitting from B′ to B. It is now a simple use of the snake lemma, to show
that the complementary summand of B in B′ is isomorphic to C. We thus have that the bottom
row of the diagram above is of the form

0→M → N → B ⊕ C → C.

This looks hopeful but to finish off the argument we just produce the morphism:

0 //M //

=

��

M
0 //

��

C

incl2
��

// C

=

��

// 0

0 //M // N
incl1p
// B ⊕ C // C // 0

and we have a sequence of maps joining our spliced sequence to the trivial one. (A similar argument
goes through in higher dimensions.) Now you should try to prove that if a spliced sequence is
linked to a trivial one then it does come from an induced one. That is quite tricky, so look
it up in a standard text. An alternative approach is to use the homological algebra to get the
trivialising element (coboundary or homotopy, depending on your viewpoint) and then to construct
the extension from that. Another thing to do is to consider how the Ext-groups, Extk(A,M), vary
in M rather than with A. This will be left to you.

3.8.3 From Ext to group cohomology

If we look briefly at the classical homological algebraic method of defining ExtK(A,M), we would
take a projective resolution P· of A, apply the functor Hom(−,M), to get a cochain complex
Hom(P·,M), then take its (co)homology, with Hn(Hom(P·,M)) being isomorphic to Extn(A,M),
or, if you prefer, Extn(A,M) being defined to be Hn(Hom(P·,M)). This method can be studied
in most books on homological algebra (we cite for instance, MacLane, [92], Hilton and Stammbach,
[72] and Weibel, [135]), so is easily accessible to the reader - and we will not devote much space
to it here as a result. We will however summarise some points, notation, definitions of terms etc.,
some of which you probably know.

First the notion of projective module:

Definition: A module P is projective if, given any epimorphism, f : B → C, the induced map
Hom(P, f) : Hom(P,B)→ Hom(P,C) is onto. In other words any map from P to C can be lifted
to one from P to B.

Any free module is projective.
Of the properties of projectives that we will use, we will note that Extn(P,M) = 0 for P

projective and for any M . To see this recall that any n-fold extension of P by M will end with an
epimorphism to P , but such things split as their codomain is projective. It is now relatively easy
to use this splitting to show the extension is equivalent to the trivial one.

A resolution of a module A is an augmented chain complex

P· : . . .→ P1 → P0 →M

which is exact, i.e. it has zero homology in all dimensions. This means that the augmentation
induces an isomorphism between P0/∂P1 and M . The resolution is projective if each Pn is a
projective module.
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If P· and Q· are both projective resolutions of A, then the cochain complexes Hom(P·,M)
and Hom(Q·,M) always have the same homology. (Once again this is standard material from
homological algebra so is left to the reader to find in the usual sources.)

An example of a projective resolution is given by the bar resolution, BG·, and the construction
Cn(G,M) in the first chaper is exactly Hom(BG·,M). This reolution ends with BG0 = Z[G] and
the resolution resolves the Abelian group Z with trivial G-module structure. (This can be seen
from our discussion of homological syzygies where we had

Z[G](R) → Z[G](X) → Z[G]→ Z.

In fact we have

Hn(G,M) ∼= Extn(Z,M)

by the fact that BG· is a projective resolution of Z and then we can get more information using
the short exact sequence

0→ I(G)→ Z[G]→ Z→ 0.

As Z[G] is a free G-module, it is projective and the long exact sequence for Ext(−,M) thus has
every third term trivial (at least for n > 0), so

Extn(Z,M) ∼= Extn−1(I(G),M)

giving another useful interpretation of Hn(G,M).

3.8.4 Exact sequences in cohomology

Of course, the identification of Hn(G,M) as Extn(Z,M) means that, if

0→ L→M → N → 0

is an exact sequence of G-modules, we will get a long exact sequence in Hn(G,−), just by looking
at the long exact sequence for Extn(Z,−).

What is more interesting - but much more difficult - is to study the way that Hn(G,M) varies
as G changes. For a start it is not completely clear what this means! If we change the group in a
short exact sequence,t

1→ G→ H → K → 1

say, then what type of modules should be used fro the ‘coefficients’, that is to say a G-modules or
one over H or K. This problem is, of course, related to the change of groups along an arbitrary
homomorphism, so we will look at an group homomorphism ϕ : G → H, with no assumptions as
to monomorphism, or normal inclusion, at least to start with.

Suppose given such a ϕ, then the ‘restriction functor’ is

ϕ∗ : H−Mod→ G−Mod,

where, if N is in H−Mod, ϕ∗(N) has the same underlying Abelian group structure as N , but is a
G-module via the action, g.n := ϕ(g).n. We have already used that ϕ∗ has a left adjoint ϕ∗ given
by ϕ∗(M) = ZH ⊗ZGM . Now we also need a right adjoint for ϕ∗.
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To construct such an adjoint, we use the old device of assuming that it exists, studying it and
then extracting a construction from that study. We have M in G−Mod and N in H−Mod, and
we assume a natural isomorphism

G−Mod(ϕ∗(N),M) ∼= H−Mod(N,ϕ](M)).

If we take N = ZH, then, as H−Mod(ZH,ϕ](M)) ∼= ϕ](M), we have a construction of ϕ](M), at
least as an Abelian group. In fact this gives

ϕ](M) ∼= G−Mod(ϕ∗(ZH),M)

and as ZH is also a right G-module, via h.g := h.ϕ(g), we have a left G-module structure of ϕ](M)
as expected. In fact, this is immediate from the naturality of the adjunction isomorphism using the
left hand position of G−Mod(ϕ∗(ZH),M), as for fixed M , the functor converts the right G-action
of Z to a left one on ϕ](M). This allows us to get an explicit elementwise formula for this action
as follows: let m∗ : ZH → M be a left G-module mrphsim This can be specified by what it does
to the natural basis of ZH (as Abelian group), and so is often written m∗ : H → M , where the
function m∗ must satisfy a G-equivariance property: m∗(ϕ(g).h) = g.m∗(h). Any such function
can, of course, be extended linearly to a G-module morphism of the earlier form. If g ∈ G, we get
a morphism

−.ϕ(g) : ϕ∗(ZH)→ ϕ∗(ZH)

given by ‘h goes to hϕ(g)’. This is a G-module morphism as the G-module structure is by left
multiplication, which is independent of this right multiplication. Applying G−Mod(−,M), we get
g.m∗ is given by

g.m∗(h)−m∗(h.ϕ(g).

This is a left G-module structure, although at first that may seem strange. That it is linear is easy
to check. What take a little bit of work is to check (g1g2).m∗ = g1(g2.m

∗): applying both sides to
an element h ∈ H gives

(g1g2).m∗(h) = m∗(hϕ(g1)ϕ(g2)),

whilst

g1(g2.m
∗)(h) = (g2.m

∗)(h.ϕ(g1)) = m∗(hϕ(g1)ϕ(g2)).

(The checking that g1.m
∗ does satisfy the G-equivariance property is left to the reader.)

Remark: There are great similarities between the above calculations and those needed later
when examining bitorsors. This is certainly not coincidental!

We built ϕ](M) in such a way that it is obviously functorial in M and gives a right adjoint to
ϕ∗. This implies that there is a natural morphism

i : N → ϕ]ϕ
∗(N).

We denote this second module by N∗, when the context removes any ambiguity, and especially
when ϕ is the inclusion of a subgroup. The morphism sends n to n∗ : H → N , where n∗(h) = h.n.
(Check that n∗(ϕ(g).h) = g.n∗(h). This reminds us that the codomain of n∗ is infact just the set
N underlying both the H-module N and the G-module ϕ∗(N).)
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We examine the cohomology groups Hn(H,N∗). These are the (co)homology groups of the
cochain complex Hom(P·, N

∗), where P· is a projective H-module resolution of Z. The adjunction
shows that this is isomorphic to Hom(ϕ∗(P·), ϕ

∗(N)). If ϕ∗(P·) is a projective G-module resolution
of the trivial G-module Z then the cohomology of this complex will be Hn(G,N), where N has the
structure ϕ∗(N).

The condition that free or projective H modules restrict to free or projective G-modules is
satisfied in one important case, namely when G is a subgroup of H, since ZH is a free Abelian
group on the set H and H is a disjoint union of right G-cosets, so ZH splits as a G-module into a
direct sum of copies of ZG. This provides part of the proof of Shapiro’s lemma

Proposition 19 If ϕ : G→ H is an inclusion, then for a H-module N , there is a natural isomor-
phism

Hn(H,N∗) ∼= Hn(G,N).

�

Corollary 4 The morphism i : N → N∗ and the above isomorphism yield the restriction morphism

Hn(H,N)→ Hn(G,N).

�

This suggest other results. Suppose we have an extension

1→ N → G→ Q→ 1

(so here we replace H by G with N in the old role of G, but in addition, being normal in G).
If we look at BN and BG in dimension n, these are free modules over the sets Nn and Gn

respectively, with the inclusion between them; G is a disjoint union of N -cosets, indexed by elements
of Q, so can we use this to derive properties of the cokernel of ZG⊗ZN BN → BG, and to tie them
into some resolution of Q, or perhaps, of Z as a trivial Q-module. The answer must clearly be
positive, perhaps with some restrictions such as finiteness, but there are several possible ways
of getting to an answer having slightly different results. (You have in the (ϕ∗, ϕ

∗) and (ϕ∗, ϕ])
adjunctions, enough of the tools needed to read detailed accounts in the literature, so we will not
give them here.)

This also leads to relative cohomology groups and their relationship with the cohomology of
the quotient Q. We can also consider the crossed resolutions of the various groups in the extension
and work, say, with the induced maps

C(N)→ C(C)

looking at its cokernel or better what should be called its homotopy cokernel.
Another possibility is to examine C(N) and C(Q) and the cocycle information needed to specify

the extension, and to use all this to try to construct a crossed resolution of G. (We will see
something related to this in our examination of non-Abelian cohomology a little later.) A simple
case of this is when the extension is split, G ∼= NoQ and using a twisted tensor product for crossed
complexes, one can produce a suitable C(N)⊗τ C(Q) resolving G, (see Tonks, [127]).
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Chapter 4

Syzygies, and higher generation by
subgroups

Syzygies are one of the routes to working with resolutions. They often provide insight as to how a
presentation relates to geometric aspects of a group, for instance giving structured spaces such as
simplicial complexes, or, better, polytopes, on which the group acts. Syzygies extend the role of
‘relations’ in group presentations to higher dimensions and hence are ’relations between relations
... between relations’. They thus form a very well structured (and thus simpler) case of higher
dimensional rewriting. Later we will see relations between this and several important aspects of
cohomology. We will also explore some links with ideas from rewriting theory.

4.1 Back to syzygies

There are both homotopical and homological syzygies. We have met homological syzygies earlier
and also have:

4.1.1 Homotopical syzygies

We have built a complex, K(P), from a presentation, P, of a group, G. Any element in π2(K(P))
can, of course, be represented by a map from S2 to K(P) and, by cellular approximation, can be
replaced, up to homotopy, by a cellular decomposition of S2 and a cellular map φ : S2 → K(P).
We will adopt the terminology of Kapranov and Saito, [84], and Loday, [90], and say

Definition: A homotopical 2-syzygy consists of a cellular subdivision of S2 together with a
map, φ : S2 → K(P), cellular for that decomposition..

Of course, such an object corresponds to an identity among the relations of P, but is a specific
representative of such an identity. The specification of the cellular decomposition provides valuable
combinatorial and geometric information on the presentation.

Definition: A family, {φλ}λ∈Λ, of such homotopical 2-syzygies is then called complete when
the homotopy classes {[φλ]}λ∈Λ generate π2(K(P)).

97
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In this case, we can use the φλ to form the next stage of the construction of an Eilenberg-Mac
Lane space, K(G, 1), by killing this π2. More exactly, rename K(P) as X(2) and form

X(3) := X(2) ∪
⋃
λ∈Λ

e3
λ,

by, for each λ ∈ Λ, attaching a 3-cell, e3
λ, to X(2) using φλ. Of course, we then have

π1(X(3)) ∼= G, π2(X(3)) = 0.

Again π3(X(3)) may be non-trivial, so we consider homotopical 3-syzygies. Such a thing, s, will
consist of an oriented polytope decomposition of S3 together with a continuous map, fs from S3

to X(3), which sends the i-skeleton of that decomposition to X(i), i = 0, 1, 2.
At this stage we have X(0) = K(P)0, a point, X(1) = K(P)1, and X(2) = K(P)2. One wants

enough such 3-syzygies, s, identified algebraically and combinatorially, so that the corresponding
homotopy classes, {[fs]} generate π3(X(3)).

It is clear, by induction, we get a notion of homotopical n-syzygy. We assume X(n) has been
built inductively by attaching cells of dimension ≤ n along homotopical k-syzygies for k < n, so
that

π1(X(n)) ∼= G, πk(X(n)) = 0, k = 2, . . . , n− 1,

then a homotopical n-syzygy, s, is an oriented polytope decomposition of Sn and a continuous
cellular map fs : Sn → X(n).

After a choice of a set, Rn, of n-syzygies, so that {[ss] | s ∈ Rn} generates πn(X(n)) as a
G-module, we can form X(n + 1) by attaching n + 1-dimensional cells en+1

s along these fs for
s ∈ Rn.

If we can do this in a sensible way, for all n, we say the resulting system of syzygies is complete
and the limit space X(∞) =

⋃
X(n) is then a cellular model for BG, the classifying space of the

group G. We will look at classifying spaces again later.

This construction is, of course, just a homotopical version of the construction of a free resolution
of the trivial G-module, Z.

Remark: Some additional aspects of this can be found in Loday’s paper [90], in particular the
link with the ‘pictures’ of Igusa, [78, 79].

Example and construction: Given any group, G, we can find a presentation with {〈g〉 | g 6=
1, g ∈ G} as set of generators and a relation, rg,g′ := 〈g〉〈g′〉〈g′g〉−1, for each pair (g, g′) of elements
of G. (We write 〈1〉 = 1 for convenience.) We will have earlier call this the standard presentation
of the group, G. It is closely related to the nerve of G[1], and also to the various bar resolutions.
(There may be a need later to consider a variant in which the identity element of G is not excluded
as a generator, however that will still be loosely called the standard presentation. Note that since
then 〈1〉.〈g〉 = 〈1.g〉 = 〈g〉, the identification 〈1〉 = 1 is automatic. )

The relation rg,g′ gives a triangle
.

g′

  AAAAAAA

.

g
>>}}}}}}}
g′g

// .
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and, for each triple (g, g′, g′′), we get a homotopical 2-syzygy in the form of a tetrahedron.

Higher homotopical syzygies occur for any tuple, (g1, . . . , gn), of non-identity elements of G,
by labelling a n-simplex. The limiting cellular space, X(∞), constructed from this context is just
the usual model of the classifying space, BG, as geometric realisation of the nerve of G, or if you
prefer, of the groupoid G[1] with one object. The corresponding free resolution, (C∗(G), d), is the
classical normalised bar resolution. Using the bar resolution above dimension 2 together with the
crossed module of the presentation at the base, one gets the standard free crossed resolution of the
group, G, as we saw in section 3.1.2.

4.1.2 Syzygies for the Steinberg group

(This is adapted from Kapranov and Saito, [84].)

Let R be an associative ring with 1. Recall that the (nth unstable) Steinberg group, Stn(R),
has generators, xij(a), labelling the elementary matrices εij(a), having

εij(a)k,l =


1 if k = l
a if (k, l) = (i, j), a ∈ R
0 otherwise,

and relations

St1 xi,j(a)xi,j(b) = xi,j(a+ b);

St2 [xi,j(a), xk,`(b)] =

{
1 if i 6= `, j 6= k,
xi,`(ab) i 6= `, j = k

and in which all indices are positive integers

less than or equal to n.

The terminology ‘nth unstable’ is to make the contrast with the group St(R), the stable version.
The unstable version, Stn(R), models ‘universal’ relations satisfied by the n×n elementary matrices,
whilst, in St(R), the indices, i, j, k etc. are not constrained to be less than or equal to n. We will
look at the stable version later.

The identities / homotopical 2-syzygies are built from three types of polygon:

a) a triangle, Tij(a, b) for each i, j, i 6= j, coming from St1;

b) a square,

xij(a)
.....................
..................
....

......................
xij(a)

.................
....

xkl(b) xkl(b)

corresponding to the first case of St2 and

c) a pentagon, for the second:
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xij(a)

............................................................................................
..................
....

......................

.....................................................................................................................................
..
..........................................................................................

....................
..

...................................................................................................................
......................

xij(a)xik(ab)

xjk(b)

xjk(b)

Then for any pairs (i, j), (k, l), (m, p) with xij(a), xkl(b), xmp(c), commuting by virtue of St2’s first
clause, we will have a homotopical syzygy in the form of a labelled cube.

There is also a homotopy 2-syzygy given by the associahedron labelled by generators as shown:
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xk`(c)

xjk(b)

xj`(bc)

xk`(c)

xk`(c)

xi`(abc)

xk`(c)

xi`(abc) xk`(c)

xij(a)

xik(ab)

xij(a)xij(a)

xik(ab) xjk(b)

xjk(b)

xij(a)

xjl(bc)

xjk(b)

xij(a)

xjk(b)

Remark: Kapranov and Saito, [84], have conjectured that the space X(∞) obtained by gluing
labelled higher Stasheff polytopes together, is homotopically equivalent to the homotopy fibre of

f : BSt(R)→ BSt(A)+,

where (−)+ denotes Quillen’s plus construction. The associahedron is a Stasheff polytope and,
by encoding the data that goes to build the identities / syzygies schematically in a ‘hieroglyph’,
Kapranov and Saito make a link between such hieroglyphs and polytopes.

4.2 A brief sideways glance: simple homotopy and algebraic K-
theory

The study of the Steinberg group is closely bound up with the development of algebraic K-theory.
That subject grew out of two apparently unrelated areas of algebraic geometry and algebraic
topology. The second of these, historically, was the development by Grothendieck of (geometric
and topological) K-theory based on projective modules over a ring, or finite dimensional vector
bundles on a space. (The connection between these is that the space of global sections of a finite
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dimensional vector bundle on a nice enough space, X, is a finitely generated projective module over
the ring of continuous real or complex functions on X. We will look at vector bundles and this link
with K-theory a bit more in detail later on; see section ??. We will be discussing other forms of
K-theory in that section as well, so will not give more detail on that more purely topological side
of the subject here.)

Algebraic K-theory was initially a body of theory that attempted to generalise parts of lin-
ear algebra, notably the theory of dimension of vector spaces, and determinants to modules over
arbitrary rings. It has grown into a well developed tool for studying a wide range of algebraic,
geometric and even analytic situations from a variety of points of view.

For the purposes here we will give a short description of the low dimensional K-groups of a ring,
R, with for initial aim to provide examples for use with the further discussion of rewriting, group
presentations, syzygies, and homotopy. The discussion will, however, also look a bit more deeply
at various other aspects when they seem to fit well into the overall structure of the notes.

4.2.1 Grothendieck’s K0(R)

For our discussion here, it will suffice to say that, given an associative ring, R, we can form the set,
[Projfg(R)] of isomorphism classes of finitely generated projective modules over R. Direct sum
gives this a monoid structure. This is then ‘completed’ to get an Abelian group. We will give a
more detailed discussion of this later in Proposition ??, but here we will just give the formula:

K0(R) := F ([Projfg(R)])/〈[P ] + [Q]− [P ⊕Q]〉

in which P and Q are finitely generated projective modules, F is the free Abelian group functor
and [P ] indicates the isomorphism class of P . The relations force the abstract addition in the free
Abelian group to mirror the direct sum induced addition on the generators.

4.2.2 Simple homotopy theory

The other area that led to algebraic K-theory was that of simple homotopy theory. J. H. C. White-
head, following on from earlier ideas of Reidemeister, looked at possible extensions of combinatorial
group theory, with its study of presentations of groups, to give a combinatorial homotopy theory;
see [139]. This would take the form of an ‘algebraic homotopy theory’ giving good algebraic models
for homotopy types, and would hopefully ease the determination of homotopy equivalences for in-
stance of polyhedra. The ‘combinatorial’ part was exemplified by his two papers on ‘Combinatorial
Homotopy Theory’ [137, 138], but raised an interesting question. In combinatorial group theory, a
major role is played by Tietze’s theorem:

Theorem 6 (Tietze’s theorem, 1908, [123]) Given two finite presentations of the same group, one
can be obtained from the other by a finite sequence of Tietze transformations. �

Proofs of this are easy to find in the literature. For instance, one based on a series of exercises
is given in Gilbert and Porter, [65], p.135.

We clearly need to make precise what are the Tietze transformations.

Let P = (X : R) be a group presentation of a group, G and set F (X) to be the free group on
the set X. We consider the following transformations:
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T1: Adding a superfluous relation: (X : R) becomes (X : R′), where R′ = R ∪ {r} and
r ∈ N(R), the normal closure of the relations in the free group on X, i.e., r is a consequence of R;

T2: Removing a superfluous relation: (X : R) becomes (X : R′) where R′ = R−{r}, and
r is a consequence of R′;

T3: Adding a superfluous generator: (X : R) becomes (X ′ : R′), where X ′ = X ∪ {g}, g
being a new symbol not in X, and R′ = R ∪ {wg−1}, where w is a word in the other generators,
that is w is in the image of the inclusion of F (X) into F (X ′);

T4: Removing a superfluous generator: (X : R) becomes (X ′ : R′), where X ′ = X −{g},
and R′ = R− {wg−1} with w ∈ F (X ′) and wg−1 ∈ R and no other members of R′ involve g.

Definition: These transformations are called Tietze transformations.

The question was to ask if there was a higher dimensional version of the Tietze transformations
that would somehow generate all homotopy equivalences.

Let us imagine the transformation of the complex, K(P), of P under these moves. The complex
is, of course, a simple form of CW-complex, built by attaching cells in dimensions 1 and then 2.
If we add a superfluous generator to P as above (T3), then effectively we add a 2-cell labelled by
wg−1 and it will be glued on by an attaching map that is defined on a semi-circle in its boundary
and on which the path represents the word, w. The other semi-circle yields the loop representing
the new generator. This process therefore does not change the homotopy type of K(P). On the
other hand, adding a superfluous relation will change the homotopy type of the complex. The new
relation corresponds to a 2-cell glued on to K(P), but the attaching map is already null-homotopic
in K(P) as it represents a consequence of the relations. The effect is that K(P ′) has the homotopy
type of K(P) ∨ S2, and the module of identities has an extra free summand.

These thus show both types of behaviour when attaching a cell to a pre-existing complex. In the
first, the relation 2-cell is attached by part of its boundary. In the second the new cell is attached
by gluing along all of its boundary, so will change the homotopy type of K(P). It will not change
its fundamental group, just its higher homotopy groups. This raises and interesting question, and
that is to mirror these Tietze transformations by higher order ones which do not change the n-type,
for some n, but may change the whole homotopy type, but we need to get back towards simple
homotopy theory.

Tietze transformations had given a way of manipulating presentations and thus suggested a
way of manipulating complexes. The thought behind simple homotopy theory was to produce a
way of constructing homotopy equivalences between complexes. This, if it worked, might simplify
the task of determining whether two spaces (defined, say, as simplicial complexes) were of the same
homotopy type, and if so was it possible to build up the homotopy equivalences between them in
some simple way.

The resulting theory was developed initially by Reidemeister and then by Whitehead, culmi-
nating in his 1950 paper, [140]. The theory received a further important stimulus with Milnor’s
classic paper, [98], in which the emphasis was put on elementary expansions.

(A good source for the theory of simple homotopy is Cohen’s book, [40].)
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We will work here with finite CW-complexes. These are built up by induction by gluing on
n-cells, that is copies of Dn = {x ∈ Rn |

∑
x2
i ≤ 1}, at each stage. Each Dn has a boundary

an (n − 1)-sphere, Sn−1 = {x ∈ Rn |
∑
x2
i = 1}. The construction of objects in the category of

finite CW-complexes is by attaching cells by means of maps defined on part of all of the boundary
of a cell. This will usually change the homotopy type of the space, creating or filling in a ‘hole’.
The homotopy type will not be changed if the attaching map has domain a hemisphere. We write
Sn−1 = Dn−1

− ∪Dn−1
+ , with each hemisphere homeomorphic to a (n− 1)-cell, and their intersection

being the equatorial (n− 2)-sphere, Sn−2, of Sn−1.

Given, now, a finite CW-complex, X, we can build a new complex Y , consisting of X and two
new cells, en and en−1 together with a continuous map, ϕ : Dn → Y satisfying

(i) ϕ(Dn−1
+ ) ⊆ Xn−1;

(ii) ϕ(Sn−2) ⊆ Xn−2;

(iii) the restriction of ϕ to the interior of Dn is a homeomorphism onto en;

and

(iv) the restriction of ϕ to the interior of Dn−1
− is a homeomorphism onto en−1.

There is an obvious inclusion map, i : X → Y , which is called an elementary expansion. There
is also a retraction map r : Y → X, homotopy inverse to i, and which is called an elementary
contraction. Both are homotopy equivalences. Can all homotopy equivalences between finite CW-
complexes be built by composing such elementary ones? More precisely if we have a homotopy
equivalence f : X → X ′, is f homotopic to a composite of a finite sequence of elementary expansions
and contractions? Such a homotopy equivalence would be called simple. Whitehead showed that
not all homotopy equivalences are simple and constructed a group of obstructions for the problem
with given space X, each non-identity element of the group corresponding to a distinct homotopy
class of non-simple homotopy equivalences.

4.2.3 The Whitehead group and K1(R)

We will very briefly sketch how the investigation goes, skimming over the details; for them, see
Milnor, [98], or Cohen’s book, [40].

Starting with a homotopy equivalence, f : X → Y , we can convert it to a deformation retraction
using the mapping cylinder construction. (We will see this in more detail later, but do not need that
detail here). This means that we have a CW-pair, (Y,X), with a deformation retraction from Y to
X. Classifying the simple homotopy types of X is then transformed into a problem of classifying
these. Passing first to their universal covering spaces, Ỹ and X̃, and then to the cellular chain
complexes associated to both these, the problem is reduced to examining the relative cellular chain
complex, C(Ỹ , X̃), obtained from the exact sequence

0→ C(X̃)→ C(Ỹ )→ C(Ỹ , X̃)→ 0

All of these can be considered as chain complexes of modules over the group ring of π1X. As there
are only finitely many cells in X and Y , this chain complex has only finitely many non-zero levels
in it. It is also acyclic, i.e., has zero homology because the inclusion of C(X̃) into C(Ỹ ) induces
isomorphism on homology. The cells in Y −X give a preferred basis to the modules concerned.
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One further reduction takes the direct sum of the even dimensional C(Ỹ , X̃)n, and similarly
that of the odd ones, and the induced boundary from the odds to the evens. (At each stage the
reduction is checked to preserve what one want, namely whether or not the inclusion of X into Y
is given by some combinations of elementary expansions and contractions. (The last part of this
can be examined intuitively by thinking about what happens if you add in an n-cell by a n− 1-cell
in its boundary.)

This reduces the task to one of examining an isomorphism between two based free modules over
Zπ1X, and that brings us, finally, to the main point of this section namely the definition of the
group K1(R). (For this original application to simple homotopy theory, one takes R = Zπ1X.)

We will not take a historical order, concentrating on K1, which was extracted from Whitehead’s
work, and studied for its own sake by Bass, [12]. Other aspects relating to simple homotopy theory
may be looked at later on when we have more tools available.

Let R be an associative ring with 1. As usual G`n(R) will denote the general linear group of
n × n non-singular matrices over R. There is an embedding of G`n(R) into G`n+1(R) sending a
matrix M = (mi,j) to the matrix M ′ obtained from M by adding an extra row and columnof zeros
except that m′n+1,n+1 = 1. This gives a nested sequence of groups

G`1(R) ⊂ G`2(R) ⊂ . . . ⊂ G`n(R) ⊂ G`n+1(R) ⊂ . . .

and we write G`(R) for the colimit (union) of these. It will be called the stable general linear group
over R

Definition: The group, K1(R), is G`(R)Ab = G`(R)/[G`(R), G`(R)].

This is functorial in R, so that a ring homomorphism, ϕ : R → S induces K1(ϕ) : K1(R) →
K1(S).

The main initial problem with the above definition of K1(R) is that of controlling the commu-
tator subgroup of G`(R). The key is the stable elementary linear group, E(R).

We extend the earlier definition of elementary matrices (on page 115 from the finite dimensional
case, i.e., within G`n(R), to being within G`(R). Here an elementary matrix is of the form eij(a) ∈
G`(R), for some pair (i, j) of distinct positive integers and which, thus, has an a in the (i, j) position,
1s in every diagonal position and 0 elsewhere. Although there is a small risk of confusion from
notational reuse, we will, none-the-less, follow the standard notational convention and write En(R)
for the subgroup generated by the elementary matrices in G`n(R) and E(R) for the corresponding
union of the En(R) within G`(R). We will call En(R) the elementary subgroup of G`n(R),

Lemma 16 If i, j, k are distinct positive integers, then

eij(a) = [eik(a), ekj(1)].

�

This was already commented on when looking at the Steinberg group, Stn(R), which abstracts the
‘generic’ properties of the elementary matrices. The following is now obvious.

Proposition 20 For n ≥ 3, En(R) is a perfect group, i.e.,

[En(R), En(R)] = En(R).

�
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Now let M = (mij) be any n× n matrix over R. (It is not assumed to be invertible.)

We note that in G`2n(R), (
In M
0 In

)
=

n∏
i=1

n∏
j=1

ei,j+n(mij),

so this is in E2n(R). Similarly

(
In 0
M In

)
∈ E2n(R).

Next, let M ∈ G`n(R) and note(
M 0
0 M

)
=

(
In 0

M−1 − In In

)(
In In
0 In

)(
In 0

M − In In

)(
In −M−1

0 In

)
(as is easily verified). We thus have (

M 0
0 M

)
∈ E2n(R),

hence it is a product of commutators.

Lemma 17 If M,N ∈ G`n(R), then(
[M,N ] 0

0 In

)
=

(
M 0
0 M−1

)(
N 0
0 N−1

)(
(NM)−1 0

0 NM

)
,

so is in E2n(R).

Proof: Just calculation. �

Passing to the stable groups, we get the famous Whitehead lemma:

Proposition 21

[G`(R), G`(R)] = E(R).

�

This was, thus, very easy to prove, but it is crucial for the development of algebraic K-theory. It
should be noted that it did depend on having ‘enough dimensions’, so [G`n(R), G`n(R)] ⊆ E2n(R).
For our purposes here, we do not need to question whether ‘unstable’ versions of this hold, however
we will mention that, if n ≥ 3 and R is a commutative ring, then [G`n(R), G`n(R)] = En(R). The
proof is given in many texts on algebraic K-theory.

4.2.4 Milnor’s K2

We have already met the definition of K2(R) (page 37). The stable elementary linear group,
E(R), is a quotient of the stable Steinberg group, St(R). (It will help to glance back at the
presentation given on page 99 and to check that these are ‘generic’ relationships between elementary
matrices.) This stable Steinberg group is obtained from the various Stn(R) together with the
inclusions Stn(R)→ STn+1(R) obtained by including the generators of the first into the generating
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set of the second in the obvious way. the colimit of these ‘unstable’ groups yields the stable Steinberg
group

As we mentioned early and will prove shortly, there is a central extension:

1→ K2(R)→ St(R)
ϕ−→ E(R)→ 1

and thus ϕ : St(R) → E(R), a crossed module. The group, G`(R)/Im(b), is K1(R), the first
algebraic K-group of the ring.

In fact, this is a universal central extension and certain observations about such objects will
help interpret what information is contained in K2(R). We will ‘backtrack’ a bit so as to keep
things relatively self-contained.

Let, as usual, Z(G) denote the centre of a group G.

Lemma 18 (i) Z(E(R)) = 1;
(ii) Z(St(R)) = K2(R).

Proof: This is elementary, but fun!

Suppose that N ∈ Z(E(R)), then N ∈ En(R) for some n. Within E2n(R),(
N 0
0 I

)(
I I
0 I

)
=

(
I I
0 I

)(
N 0
0 I

)
,

since N is central in E(R). This works out as(
N N
0 I

)
=

(
N I
0 I

)
,

i.e., N = I.

Next suppose that M ∈ Z(St(R)), then, as ϕ is surjective, ϕ(M) ∈ Z(E(R)), so must be trivial,
as required. �

Proposition 22

1→ K2(R)→ St(R)
ϕ−→ E(R)→ 1

is a central extension. �

We next need to examine universal central extensions.

Definitions: (i) A central extension

1→ K
k−→ H

σ−→ G→ 1

is said to be weakly universal if, given any other central extension of G,

1→ L
k′−→ E

σ′−→ G→ 1,
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there is a homomorphism ψ : H → E making the diagram

1 // K
k //

ψ|K
��

H
σ //

ϕ

��

G //

=

��

1

1 // L
k′
// E

σ′
// G // 1

commutes.
(ii) The central extension, as above, of G is universal if it is weakly universal and, in the

previous definition, the morphism ψ is unique with that property.

Proposition 23 Every group has a weakly universal central extension.

Proof: Suppose that we have a presentation (X : R) of G, or more usefully for us, a presentation
sequence:

1→ K
k−→ F

p−→ G→ 1,

(so F = F (X), the free group on X, and K = N(R) is the kernel of p). The subgroup, [K,F ]. of
F generated by the commutators, [k(x), y], with x ∈ K, and y ∈ F , is normal , as is easily checked
and is in K, so we can form an extension

1→ K

[K,F ]
→ F

[K,F ]
→ G→ 1.

(Note that ‘dividing out by this subgroup identifies all k(x)y and yk(x), so should make a central
extension. It ‘kills’ the conjugation action of F on K.)

We will write H = F/[K,F ] with σ : H → G for the induced epimorphism, so we now have

E : 1→ Ker σ → H
σ−→ G→ 1.

This is a central extension, as is easily checked (left to you).
Now suppose

E′ : 1→ L
k−→ E

σ′−→ G→ 1

is another central extension. We have to construct a morphism, ψ : E → E′, i.e., ϕ : H → E,
compatibly with the projections to G, (and their kernels). As F is free and σ′ is an epimorphism,
we can find τ : F → E such that στ = p. Now σ′τk = 1, so τk = k′ψ|K : K → L. We
examine a commutator [k(x), y] with x ∈ K, y ∈ F . The image of this under τ will be τ [k(x), y] =
[τk(x), τ(y)] = [k′τ |K(x), τ(y)] = 1, since E′ is a central extension, so τ induces a ψ : H → E
compatibly with the projections to G, and hence with their kernels. �

When will G have a universal central extension? The answer is: when G is perfect.

Definition: Suppose G is a group, it is perfect if [G,G] = G, i.e., it is generated by commuta-
tors.

Proposition 24 Every perfect group, G, has a universal central extension.
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Proof: (We can pick up ideas and notation from the previous proof.) As G is perfect, we can
restrict σ : H → G to the subgroup [H,H] and still get a surjection. We thus have

1 // K ∩ [H,H] //

��

[H,H]
σ //

��

G

=

��

// 1

1 // K // H σ
// G // 1

It is clear that as the bottom is weakly universal, so is the top one.
We next need a subsidiary result.

Lemma 19 If 1→ Ker σ → H
σ−→ G→ 1 is a weakly universal central extension and H is perfect,

then G is perfect and the central extension is universal.

Proof: The first conclusion should be clear, so we are left to prove ‘universal’. Suppose we have
E′ as before and obtain two morphism ϕ and ϕ′, from H to E such that σ′ϕ = σ′ϕ′ = σ. We have,
for h1, h2 ∈ H, ϕ(h1) = ϕ′(h1)c, and ϕ(h2) = ϕ′(h2)d for some c, d,∈ L. we calculate that

ϕ(h1h2h
−1
1 h−1

2 ) = ϕ′(h1h2h
−1
1 h−1

2 ),

since c and d are central in E, but as commutators generate H, ϕ = ϕ′ everywhere in H. �

To complete the proof of the proposition, we show that, back in case [[H,H] is itself perfect.
We have

[H,H] =

[
F

[K,F ]
,

F

[K,F ]

]
=

[F, F ]

[K,F ]
,

now as G is perfect, every element in F can be written in the form x = ck with c ∈ [F, F ] and
k ∈ K. (One could say ‘F is perfect up to K’.)

Take, now, a [x, y] ∈ [H,H], i.e., a commutator of x, y ∈ F/[K,F ] with x denoting the coset
x[K,F ], etc. Set x = ck, y = d`, c, d,∈ [F, F ]

xyx−1y−1 = x.y.x−1.y−1

= c.d.c−1.d
−1

= cdc−1d−1 ∈ [[H,H], [H,H]]

since elements ofK commute with elements of F mod [K,F ]. We thus have [H,H] = [[H,H], [H,H]],
as claimed. �

To summarise, suppose we have a group presentation, G = (X : R), of a perfect group, G. This
gives us an exact ‘presentation sequence’

1→ K → F → G→ 1

where we abbreviate N(R) to K. There is, then, a short exact sequence:

1→ K ∩ [F, F ]

[K,F ]
→ [F, F ]

[K,F ]
→ G→ 1

and this is its universal central extension.
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Remark: The term on the left is the usual formula for the Schur multiplier of G and is one of
the origins of group homology. It gives the Hopf formula for H2(G,Z), the second homology of G
with coefficients in the trivial G-module, Z.

To apply this theory and discussion back to the Steinberg group, St(R), we need to check that
St(R) is a perfect group and that the central extension that we have is weakly universal. the first
of these is simple.

Lemma 20 The group St(R) is perfect.

Proof:We can write any generator xij(a) as [xik(a), xkj(1)] for some k other than i or j, so the
proof is the same as that En(R) is perfect (for n ≥ 3), that we gave earlier. �

This leaves us to check that the central extension

1→ K2(R)→ St(R)
ϕ−→ E(R)→ 1

that we saw earlier is weakly universal (as it will then be universal by the previous lemma).
Suppose that we have

1→ L→ E
σ−→ E(R)→ 1

is a central extension. We have to define a morphism ψ : St(R)→ E projecting down to the identity
morphism on E(R). As we have St(R) defined by a presentation, the obvious way to proceed is
to find suitable images in E for the generators, xij(a), and then see if the Steinberg relations are
satisfied by them.

To start with, for each generator xij(a) of St(R), we pick an element, yij(a), in E such that
σ(yij(a)) = eij(a), the corresponding elementary matrix, which is, of course, the image of xij(a) in
E(R). (Note that any other choice of the yij(a) will differ from this by a family of elements of the
kernel, L, and hence by central elements of E.)

We will prove, or note, various useful identities, which will give us what we need.

• [u, [v, w]] = [uv,w][w, u][w, v] for u, v, w,∈ E;

• for convenience, for u ∈ E, write ū = σ(u) ∈ E(R), and for u, v ∈ E, write u ∼ v if uv−1 ∈ L,
then note that if u ∼ u′ and v ∼ v′, we have [u, v] = [u′, v′];

• if u, v, w,∈ E with [ū, v̄] = [ū, w̄] = 1, then

[u, [v, w]] = 1.

To see this, put a = [u, v], b = [u,w], so, by assumption, ā = b̄ = 1 and a, b ∈ L. We then
have uvu−1 = av, uwu−1 = bw, and [av, bw] = [v, w], since a, b ∈ L. Next look at

[u, [v, w]] = u[v, w]u−1[v, w]−1 = [uvu−1, uwu−1][v, w]−1 = 1

by our previous calculation.

We are now ready to look at the yij(a)s and see how nearly they will satisfy the Steinberg relations,
(St1 and St2 of page 99). (They will not necessarily satisfy them ‘on-the-nose’, but we can use
them to get another choice that will work.)



110 CHAPTER 4. SYZYGIES, AND HIGHER GENERATION BY SUBGROUPS

• If i 6= j, k 6= `, so the corresponding ys make sense, and further i 6= `, j 6= k (to agree with the
condition of the first part of the St2) relation), then [yij(a), yk`(b)] = 1. To see this we choose
n bigger than all the indices involved here, so that we can have yk`(b) ∼ [ykn(b), yn`(1)], as
they give the same element when mapped down to E(R). We thus have

[yij(a), yk`(b)] = [yij(a), [ykn(b), yn`(1)]] = 1,

by the above, so the ys do go some way towards what we need, (but the other relations need
not hold). We will use them, however, to make a better choice.

• Suppose i, j and n are distinct, and, as always, a ∈ R. Set

znij(a) = [yin(a), yjn(1)].

It is easy to see that this depends on i, j and a, and, slightly less obviously, that it does not
depend on the choice of the yk`s. Actually it does not depend on n at all. (The details are
left for you to check, but use the commutator rules above to show znik(ab) = [yij(a), yjk(b)].
That is independent of n.) We write zij(a) for znij(a), as n is irrelevant, as long as it is
sufficiently large. These zij(a) will do the trick!

We define ψ : St(R) → E by defining ψ(xij(a)) = zij(a) and will check that zij(a) satisfies the
relations of St(R), (as that will mean that this assignment does define a homomorphism by what
is sometimes known as von Dyck’s Theorem).

Most have been done (and checking this is again left to you), except for

zij(a)zij(b) = zij(a+ b).

Clearly their difference is central in E, but that is not enough. We calculate

zij(a+ b) = zij(b+ a)

= [zik(b+ a), zkj(1)] withk 6= i, j

= [zik(b)zik(a), zkj(1)] as the ‘difference is central’

= [zik(b), zij(a)]zij(a)zij(b) using the first commutator identity above

= zij(a)zij(b)

as required.
We have checked, in quite a lot of detail, that

Proposition 25
1→ K2(R)→ St(R)

ϕ−→ E(R)→ 1

is a universal central extension. �

4.2.5 Higher algebraic K-theory: some first remarks

Milnor’s definition of K2(R) was initially given in a course at Princeton in 1967. The search for
higher algebraic K-groups was then intense; see Weibel’s excellent history of algebraic K-theory,
[136]. The breakthrough was due to Quillen, who in 1969/70, gave the ‘plus construction’, which
was a method of ‘killing’ the maximal perfect subgroup of a fundamental group, π1(X). Applying
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this to the classifying space, BG`(R), of the stable general linear group, gave a space BG`(R)+,
whose homotopy groups had the right sort of properties expected of those mysterious higher groups
and so were taken to be Kn(R) := πn(BG`(R)+).

Several other constructions of Kn(R) were given in 1971 and were gradually shown to be equiva-
lent to Quillen’s. One of these which was based upon the theory of ‘buildings’ and upper triangular
subgroups was by I. Volodin, [133]. We will look at the general construction in the next few sections
as it relates closely to our theme of higher szyzygies.

We note that there are several other approaches that were developed at about the same time,
but will not be looked at in this chapter. There are also generalisations of these ideas.

4.3 Higher generation by subgroups

We now return to more general discussions relating to presentations, syzygies and rewriting, al-
though we will see the link with ideas and methods from K-theory coming in later on.

Often one has a group, G, and a family H, of subgroups. For example (i) suppose G is given
with a presentation, (X : R), then subsets of X yield subgroups of G, and a family of subsets
naturally leads to a family of subgroup, or (ii) a group may be a symmetry group of some geometric
or combinatorial structure and certain substructures may be fixed by a subgroup, so families of
subgroups may correspond to families of substructures. It is common, in this sort of situation, to
try to see if information on G can be gleaned from information on the subgroups in H. This will
happen to some extent even if it is simply the case that the union of the elements in the subgroups
generate G.

A simple example would be if G is generated by three elements a, b and c with some relations
(possibly not known or not completely known), H consists of the subgroup generated by a, and
that generated by b. There is a possibility that c is not in the subgroup generated by a and b, but
how might this become apparent.

It may be that we have, instead of a presentation of G, presentations of the subgroups in
H, can we find a presentation of G, and, more generally, suppose we have knowledge of higher
(homotopical or homological) syzygies of the presentations of the subgroups in H, can we find
not only a presentation of G, but build up knowledge of (at least some of) the syzygies for that
presentation?

The key to attacking these problems is a knowledge of the way that the subgroups interact and
by building up knowledge of the correspondence between the combinatorics of that interaction and
of the induction process of building out from H to the whole group, G.

Various instances of this process had been studied, notably by Tits, e.g. in [124–126], since, in
the situations studied in those papers, the combinatorics leads to the building of a Tits system.
They also occur in the work of Behr, [17] and Soulé, [120], but, because of their general approach
and the explicit link made to identities among relations, we will use the beautiful paper by Abels
and Holz, [1]. This, and some subsequent developments, provides the basis for a way of calculating
some syzygies in some interesting situations.

There is also a strong link with Volodin’s approach to higher algebraic K-theory, but that will
be slightly later in the notes. Here we sketch some of the background and intuition, giving some
very elementary examples. When we have more knowledge of how to work with syzygies using
both homotopical and homological methods, whether ‘crossed’ or not, we will return to look in
more detail. We will see that this study of ‘higher generation’ leads in some interesting directions,
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towards geometric constructions and concepts of use elsewhere.

4.3.1 The nerve of a family of subgroups

We start, therefore, with a group, G, and a family, H = {Hi | i ∈ I} of subgroups of G. Each
subgroup, H, determines a family of right cosets, Hg, which cover the set, G. Of course, these
partition G, so there are no non-trivial intersections between them. If we use all the right cosets,
Hig, for all the Hi in H, then, of course, we expect to get non-trivial intersections.

Remark: There is some disagreement as to which terminology for cosets is the most logical, so
we should say exactly what we mean by ‘right coset’. A subgroup H of G give a left action, H y G
on the set, G, by multiplication on the left, and hence a groupoid whose connected components are
the right cosets, Hg. The terminology ‘right coset’ corresponds to the g being on the right. If we
considered the right action then we would have left cosets in the corresponding role.

Another notational point is that when writing cosets, we follow the usual rule that there is
some informal set of coset representatives being used, or more exactly that the notation looks like
that! This can be delicate if we step outside a set based situation, as choosing a set of coset
representatives uses the axiom of choice, and in some contexts that would be ‘dodgy’.

Let

H =
∐
i∈I

Hi\G = {Hig | Hi ∈ H},

where the g is more as an indicator of right cosets than strictly speaking an index. This is the
family of all right cosets of subgroups in H. This covers G and we write N(H) for the corresponding
simplicial complex, which is the nerve of this covering.

In many situations, ‘nerves’ in some form are used to help ‘integrate’ local information into
global, since they record the way the ‘localities’ of the information fit together. (We will refer
to this type of problem as a ‘local-to-global’ problem. They occur in many different contexts.)
We have met nerves of categories, and will later meet nerves of open covers of topological spaces,
but in that latter situation, the topological features of the construction are not central to that
construction. We will consider the fairly general case of the nerve of a relation in a while, but for
the moment, we will give a working definition, specific to the application that we have in mind
here. We will refine and extend that definition later on.

Definition: LetG be a group andH a family of subgroups ofG. Let H denote the corresponding
covering family of right cosets, Hig, Hi ∈ H. (We will write H = H(G,H) or even H = (G,H),
as a shorthand as well.) The nerve of H is the simplicial complex, N(H), whose vertices are the
cosets, Hig, i ∈ I, and where a non-empty finite family, {Higi}i∈J , is a simplex if it has non-empty
intersection.

Examples: (i) If H consists just of one subgroup, H, then H is just the set of cosets, H\G and
N(H) is 0-dimensional, consisting just of 0-simplices / vertices.

(ii) If H = {H1, H2}, (and H1 and H2 are not equal!), then any right H1 coset, H1g, will
intersect some of the right H2-cosets, for instance, H1g ∩H2g always contains g. The nerve, N(H),
is a bipartite graph, considered as a simplicial complex. (If the group G is finite, or more generally,
if both subgroups have finite index, the number of edges will depend on the sizes or indcices of H1,
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H2 and H1 ∩ H2.) It is just a graphical way of illustrating the intersections of the cosets, a sort
of intersection diagram. (There is an error in [10] in which it is claimed that each coset H1 will
intersect with each of those of H2.)

As a specific very simple example, consider:

• S3 ≡ (a, b : a3 = b2 = (ab)2 = 1), (so a denotes, say, the 3-cycle (1 2 3) and b, a transposition
(1 2)).

• Take H1 = 〈a〉 = {1, (1 2 3), (1 3 2)}, yielding two cosets H1 and H1b.

• Similarly take H2 = 〈b〉 = {1, (1 2)} giving cosets H2, H2a and H2a
2.

The covering of S3 is then H = {H1, H1b,H2, H2a,H2a
2} and has nerve

H1

||||||||

DDDDDDDD

VVVVVVVVVVVVVVVVVVVVVVVVVV H1b

hhhhhhhhhhhhhhhhhhhhhhhhh

yyyyyyyy

FFFFFFFF

H2 H2a H2a
2

4.3.2 n-generating families

Abels and Holz, [1], give the following definition:

Definition: A family, H, of subgroups of G is called n-generating if the nerve, N(H), of the
corresponding coset covering is (n− 1)-connected, i.e., πiN(H) = 0 for i < n.

The following results illustrate the idea and motivate the terminology. (They are to be found
in [1].)

Proposition 26 The group, G, is generated by the union of the subgroups, H, in H if, and only
if, N(H) is connected.

We will take this apart rather than use the short proof given in [1]. (Hopefully this will show how
the idea works and how simple minded the proof can be!)

Proof: Suppose we have that G is generated by the various H in H and we are given two
vertices Hg1 and Kg2 for H,K ∈ H. (The case H = K is allowed here.) Of course, g1g

−1
2 ∈ G,

so is a product of elements from the various His, say, g1g
−1
2 = hi1 . . . hin with hik ∈ Hik . (This

observation suggests an induction on the length of this expression.)

To ‘test the water’, we assume g1g
−1
2 = h1 ∈ H1, but then g1 ∈ Hg1 ∩ H1g2 and also g2 ∈

H1g2 ∩Kg2. (We can indicate this diagrammatically as

Hg1
g1

H1g2
g2

Kg2,

where each edge is decorated by an element that witnesses that the intersection of the two cosets
is non-empty.)

If we try next with g1g
−1
2 = h1h2, then g1 = h1h2g2, so we have

Hg1
g1
H1(h2g2)

h2g2
H2g2

g2
Kg2,
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and the pattern gives the model for an induction on the length of the expression giving g1g
−1
2 in

terms of elements of the His. (Note the link between the expression and the path is very simple.)

Conversely, suppose that N(H) is connected, then if g ∈ G, we look at Hg and H for some
choice of H. There is a sequence of edges in N(H) joining these two vertices. We examine the
length, `, of such an edge path. If ` = 1, there is some h ∈ H ∩Hg, so g ∈ H. If ` = 2,

H
x1

H ′g1
x2

Hg,

and we have x1 = h1 = h2g1 with h2 ∈ H ′, whilst x2 = h3g1 = h4g. We thus obtain g = h−1
4 h3g1

and g1 = h−1
2 h1, so g = h−1

4 h3h
−1
2 h1, i.e., we have an expansion of g in terms of elements of the

various Hs. A proof of the general case is now easy. �

We next form a diagram, D, consisting of the subgroups, Hi, and all their pairwise intersections,
together with the natural inclusions, and we write H := t

∩
H for colimD. (Note that this colimit is

within the category of groups.) More exactly, there is a poset {Hj , Hj ∩Hk | j, k ∈ I}, ordered by
inclusion and D is the inclusion of this diagram into the category of groups. There is a presentation
of H with generators xg, g ∈

⋃
Hj and with relations xg · xh = xgh if g and h are both in some Hi.

(This group, H, is thus a ‘coproduct’ with amalgamated subgroups.)

There is an obvious homomorphism

H = t
∩
H → G

induced by the inclusions.

Proposition 27 The family, H, is 2-generating if, and only if, the natural homomorphism,

H = t
∩
H → G,

is an isomorphism. �

In fact,

Proposition 28 There are isomorphisms:
(a) π0N(H) ∼= G/〈

⋃
Hj〉;

(b) π1N(H) ∼= Ker(t
∩
H → G). �

We almost have shown (a) in our above argument, but will postpone more detailed proofs until
later. (They are, in fact, quite easy to give by direct calculation.)

Remark: It is often helpful to take the family, H, of subgroups and to close it up under (finite)
intersection and sometimes the inclusion order on the intersections comes in useful as well. This
closure operation does not change the homotopy type of the nerve of the corresponding coverings by
cosets, in fact, the process of taking intersections corresponds to taking the barycentric subdivision
of the original nerve.



4.3. HIGHER GENERATION BY SUBGROUPS 115

4.3.3 A more complex family of examples

An important example of the above situation is in algebraic K-theory. It occurs with the general
linear group, G`n(R), of invertible n×n matrices together with a family of subgroups corresponding
to lower triangular matrices, .... but with some subtleties involved.

Let R be an associative ring with identity and n a positive integer.
Let ∆ = {(i, j) | i 6= j, 1 ≤ i, j ≤ n} be the set of non-diagonal positions in an n× n array. We

will say that a subset, α ⊆ ∆, is closed if

(i, j) ∈ α and (j, k) ∈ α implies (i, k) ∈ α.

Note that if (i, j) ∈ α and α is closed then (j, i) /∈ α.
Let Φ = {α ⊆ ∆ | α is closed}. There is a reflexive relation ≤ on Φ by α ≤ β if α ⊆ β. These

αs are transitive relations on subsets of the set of integers from 1 to n, so essentially order the
elements of the subset. The reason for their use is the following: suppose (i, j) ∈ ∆ and r ∈ R.
The elementary matrix, εij(r), is the matrix obtained from the identity n × n matrix by putting
the element r in position (i, j),

i.e., εij(r)k,l =


1 if k = l

r if (k, l) = (i, j)

0 otherwise .

Let G`n(R)α, for α ∈ Φ, denote the subgroup of G`n(R) generated by

{εij(r) | (i, j) ∈ α, r ∈ R}.

It is easy to see that (akl) ∈ G`n(R)α if and only if

ak,l =


1 if k = l

arbitrary if (i, j) ∈ α
0 if (i, j) ∈ ∆\α.

If α ≤ β, then there is an inclusion, G`n(R)α≤β of G`n(R)α into G`n(R)β.
We will consider the G`n(R)α as forming a family, G`n(R), of subgroups of G`n(R).

Remark: Although a similar idea is found in Wagoner’s paper [134], I actually learnt the idea
for this approach to these subgroups from papers by A. K. Bak, [8, 9], and, with others, in [10],
and from talks he gave in Bangor and Bielefeld. In these sources, this construction leads on to a
discussion of his notion of a global action, and, in the third paper cited, the variant known as a
groupoid atlas. The motivation, there, is to study the unstable algebraic K-theory groups, whilst
Volodin’s original and Wagoner’s approach are more centred on the stable version.

There is a lot more that could be said about these groupoid atlasses, which were introduced
to handle the intrinsic homotopy involved in Volodin’s definition of a form of algebraic K-theory,
[133]. We will not use them explicitly here, but will attempt to show the link between the above
and the question of syzygies, higher generation by subgroups, etc.
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The nerve of this family would consist of the cosets of these subgroups, linked via their inter-
sections. We need to extract another description of the homotopy type of this simplicial complex
and for that will examine the intersections of cosets, and of the subgroups. We will do this in a
slightly strange way in as much as we will turn first, or rather after some preparation, to descrip-
tions related to Volodin’s version of the higher K-theory of an associative ring. Our approach will
be via Volodin spaces as used, for instance, in a paper by Suslin and Wodzicki, [122] and then an
examination of the various nerves of a relation, before returning to this setting.

4.3.4 Volodin spaces

Let X be a non-empty set, and denote by E(X), the simplicial set having E(X)p = Xp+1, so a
p-simplex is a p+ 1 tuple, x = (x0, . . . , xp), each xi ∈ X, and in which

di(x) = (x0, . . . , x̂i, . . . xp),

and
sj(x) = (x0, . . . , xj , xj , . . . xp),

so di omits xi, whilst sj repeats xj .

Lemma 21 The simplicial set, E(X), is contractible.

Proof: We thus have to prove that the unique map E(X)→ ∆[0] is a homotopy equivalence. (That
this is the case is well known, but we will none the less give a sketch proof of it as firstly we have not
assumed that much knowledge of simplicial homotopy and also as it gives some interesting insights
into that subject in a very easy situation.) We pick some a0 ∈ X and obtain a map ∆[0]

a0−→ E(X)
by mapping the single 0-simplex of ∆[0] to the 0-simplex, (a0) in E(X). We now show that the

identity map on E(X) is homotopic to the composite map, E(X)→ ∆[0]
a0−→ E(X), that ‘sends all

simplices to a0’.
We will look at simplicial homotopies in more detail later, (in particular around page ??), but

clearly, a homotopy h : f ' g : K → L, between two simplicial mapsa f, g : K → L, should be a
simplicial map h : K × ∆[1] → L, restricting to f and g on the two ends of K × ∆[1].. Here we
need a homotopy h : E(X)×∆[1]→ E(X) and we look at what this must be on a cylinder over a
simplex, (x0, . . . , xp). To see what to do, look at almost the simplest case, p = 1, then a schematic
representation of h on (x0, x1)×∆[1] must look like:

a0 // a0

x0 //

=={{{{{{{{

OO

x1

OO

More precisely, the two simplices of E(X)×∆[1] that we need have two forms

σ1 = ((x0, 0), (x1, 0), (x1, 1))

and
σ2 = (x0, 0), (x0, 1), x1, 1))

being, respectively the bottom right and the top left hand ones. We need h(σ1) = (x0x1, a0) and
h(σ2) = (x0, a0, a0). Now it is easy to see how to set up h, in general, giving the required contracting
homotopy. �
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Remark: Any homotopy can be specified by a family of maps, hni : Kn → Ln+1, satisfying
some rules that will be given later (page ??). It is then easy to specify the hni : E(X)n → E(X)n+1

generalising the formula we have given above. (We leave this to you if you have not seen it
before, as it is easy, but also instructive.)

The case we are really interested in is when we replace the general set, X, by the underlying
set of a group, G. (As usual, we will not introduce a special notation for the underlying set of G,
just writing G for it.) In this case we have the simplicial set E(G) and the group, G, acts freely on
E(G) by

g · (g0, . . . , gp) = (gg0, . . . , ggp).

(Here we have used a left action of G, and leave you to check that the evident right action could
equally well be used.) The quotient simplicial set of orbits, will be denoted G\E(G). It is often
useful to write [g1, . . . , gp] for the orbit of the p-simplex (1, g1, g1g2, . . . , g1g2 . . . gp) ∈ E(G)p.

It is ‘instructive’ to calculate the faces and degeneracy maps in this notation. We will only look
at [g1, g2] in detail. This element has representative (1, g1, g1g2). We thus have:

• d0(1, g1, g1g2) = (g1, g1g2) ≡ (1, g2), so d0[g1, g2] = [g2];

• d1(1, g1, g1g2) = (1, g1g2), so d1[g1, g2] = [g1g2];

• d2(1, g1, g1g2) = (1, g1), so d2[g1, g2] = [g1].

(That looks familiar!)
For the degeneracies,

• s0(1, g1, g1g2) = (1, 1, g1, g1g2), so s0[g1, g2] = [1, g1, g2];

• s1(1, g1, g1g2) = (1, g1, g1, g1g2), so s1[g1, g2] = [g1, 1, g2];

and similarly s2[g1, g2] = [g1, g2, 1].
The general formulae are now easy to guess and to prove - so they will be left to you, and

then the following should be obvious.

Lemma 22 There is a natural simplicial isomorphism,

G\E(G)
∼=−→ Ner(G[1]) = BG.

�

We thus have that G\E(G) is a ‘classifying space’ for G.
We note that this shows that G\E(G) is a Kan complex, since we already have that Ner(G[1])

is one. It is easy enough to check it directly. Of course, E(G) is Kan as well. Jumping ahead of
ourselves, we will sketch that the fundamental group of G\E(G) is π1(G\E(G)) ∼= G, whilst for
k > 1, πk(G\E(G)) is trivial. (We will have to ‘fudge’ the details as they either need material that
will not be directly handled in these notes (and hence, for which the reader is referred to standard
texts on simplicial homotopy theory), or they may depend on ideas that will be only explored later
on in the notes, so we will sketch enough to whet the appetite!)
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First we take on trust that if K is a connected Kan complex, then the kth homotopy group of
K can be ‘calculated’ by looking at homotopy classes of mappings from the boundary of a k + 1-
simplex into K, based at a base point. If you have a map, ∂∆[k + 1]→ Ner(G[1]), then you have
all the information needed to extend it to a map defined on ∆[k+1], i.e., the map you started with
is null homotopic. (If you want more intuition on this, try looking at the case k = 2 and writing
down what the various faces in ∂∆[3] will give and then see how they determine a 3-simplex in
Ner(G[1]).)

For dimension 1, the construction of π1 is, of course, that of the fundamental group(oid), so
gives a presentation with set of generators {[g] | g ∈ G} and, for each pair (g1, g2), a relation
rg1,g2 corresponding to [g1, g2] ∈ G\E(G)2, and which gives [g1][g2][g1g2]−1, but this was our prime
example of a presentation of G, so π1(G\E(G)) ∼= G.

There is, here, another useful fact for the reader to check. The quotient map from E(G)
to G\E(G) is a Kan fibration (and this is a useful example to do in detail if you are not
that conversant with Kan fibrations). The fibre of this quotient map is a constant (or ‘discrete’)
simplicial set with value G, so is a K(G, 0). As is well known, and as we will introduce and use later,
there is a long exact sequence of homotopy groups for any pointed fibration sequence, F → E → B,
so we can apply this to

K(G, 0)→ E(G)→ G\E(G)

to get πi(G\E(G) ∼= πi−1(K(G, 0)) and another proof that G\E(G) is an ‘Eilenberg Mac Lane
space’ for G, i.e., a K(G, 1) in the usual notation, (... and yes, this is related to covering spaces
...).

Returning to the construction of what are called ‘Volodin spaces’ (cf. [122]), we put ourselves
back in the context of a group, G, and a family, H, of subgroups of G. We suppose that H = {Hi |
i ∈ I} for some indexing set, I. (We may assume extra structure on I, as before, when we get
further into the construction.)

Definition: (Suslin-Wodzicki, [122], p. 65.) We denote by V (G,H), or V (H), the simplicial
subset of E(G) formed by simplices, (g0, . . . , gp), that satisfy the condition that there is some i ∈ I
such that, for all 0 ≤ j, k ≤ p, gjg−1

k ∈ Hi.

The simplicial set, V (G,H), will be called the Volodin space of (G,H).

Remark: The actual definition given in [122] uses g−1
j gk ∈ Hi, as there the convention on

cosets is gH rather than our Hg.

The subobject, V (G,H), of E(G) is a G-subobject, i.e., it is invariant under the action of G.
The corresponding quotient simplicial set G\V (G,H) coincides with the union of the BHi within
the classifying space, BG.

Remark: The construction of V (G,H) is usually ascribed to Volodin in his approach to the
higher K-theory groups of a ring, but in fact, the basic construction is essentially much older,
being due to Vietoris in the 1920s, but in a different setting, namely that of a simplicial complex
associated to an open covering of a space. This was further studied by Dowker, [55], in 1952, where
he abstracted the situation to construct two simplicial complexes from a relation between two sets.
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4.3.5 The two nerves of a relation: Dowker’s construction

The results of the next few sections are of much more general use than just for a group and a family
of its subgroups. We therefore present things in an abstract version.

Let X,Y be sets and R a relation between X and Y , so R j X×Y . We write xRy for (x, y) ∈ R.

Fairly generic example: Let X be a set (often a topological space) and Y be a collection of
(usually open) subsets of X covering X, i.e.,

⋃
Y = X. The classical case is when Y is an index

set for an open cover of X. The relation is xRy if and only if x ∈ y, or, more exactly, x is in the
subset indexed by y.

Returning to the abstract setting, we define two simplicial complexes associated to R, as follows:

(i) K = KR :

(a) the set of vertices is the set X;

(b) a p-simplex of K is a set {x0, · · · , xp} ⊆ X such that there is some y ∈ Y with xiRy for
i = 0, 1, · · · , p.

(ii) L = LR :

(a) the set of vertices is the set, Y ;

(b) p-simplex of K is a set {y0, · · · , yp} ⊆ Y such that there is some x ∈ X with xRyj for
j = 0, 1, · · · , p.

Clearly the two constructions are in some sense dual to each other. The original motivating example
was as above. It had X, a space, and Y = U = {Uα : α ∈ A}, an open cover of X, and, in that case,
KR is the Vietoris complex of U , V (U) or V (X,U), of the cover. The ‘dual’ construction has the
open cover, U , or better, the indexing set, A, as its set of vertices, and σ = 〈α0, α1, ..., αp〉, belongs
to LR if and only if the open sets, Uαj , j = 0, 1, . . . , p, have non-empty common intersection.

This is the simplicial complex known as the Čech complex, Čech nerve or simply, nerve, of the
open covering, U , and it will be denoted N(X,U), or N(U). We will have occasion to repeat
this definition later, both when considering Čech non-Abelian cohomology, (starting on page ??),
and also when looking at triangulations when examining methods of constructing some simple
topological quantum field theories, page ??.

We will extend the terminology so that for a given relation, R, KR will be called the Vietoris
nerve of R, whilst LR is its Čech nerve. (This is rather arbitrary as the Vietoris nerve of R is the
Čech nerve of the opposite relation, Rop, from Y to X.)

In the situation in this chapter, we have a pair, (G,H), and X is G, whilst Y is the family, H,
of right cosets of subgroups from the family H. The relation is ‘xRy if and only if x ∈ y’.

The simplicial complex, KR, thus has G as its set of vertices and (g0, . . . , gp) is a p-simplex of
KR if, and only if, all the gks are in some common right coset, Hix, in the family H. It is then just
a routine calculation to check that this is the same as saying that the simplex is in V (H). In other
words, the Volodin complex of (G,H) is the same as the Vietoris complex of H, and it is convenient
that both names begin with the letter ‘V’ ! The one difference is that the Vietoris complex is a
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simplicial complex, whilst the Volodin space is a simplicial set. For each p-simplex {g0, . . . , gp}, of
V (H), there are p! simplices in the Volodin space.

The corresponding Čech nerve, LR, is N(H) as introduced earlier, so if σ ∈ N(H)p σ =
{H0g0, · · · , Hpgp} with the requirement that ∩σ = ∩

i=0

pHigi 6= ∅.

Before turning to Dowker’s result, we will examine barycentric subdivisions as these play a neat
role in his proof.

4.3.6 Barycentric subdivisions

Combinatorially, if K is a simplicial complex with vertex set, VK , then one associates to K the
partially ordered set of its simplices. (We avoid our earlier notation of V (K) for the vertex set as
being too ambiguous here.) Explicitly we write S(K) for the set of simplices of K and (S(K),⊆)
for the partially ordered set with ⊆ being the obvious inclusion. The barycentric subdivision, K ′, of
K has S(K) as its set of vertices and a finite set of vertices of K ′ (i.e., simplices of K) is a simplex
of K ′ if it can be totally ordered by inclusion.) We may sometimes write Sd(K) instead of K ′.)

Remark: It is important to note that there is, in general, no natural simplicial map from K ′

to K. If, however, VK is given an order in such a way that the vertices of any simplex in K are
totally ordered (for instance by picking a total order on VK), then one can easily specify a map,

ϕ : K ′ → K,

by:
if σ′ = {x0, · · · , xp} is a vertex of K ′ (so σ′ ∈ S(K)), let ϕσ′ be the least vertex of σ′ in the given
fixed order.

This preserves simplices, but reverses order so if σ′1 ⊂ σ′2 then ϕ(σ′1) ≥ ϕ(σ′2).

If one changes the order, then the resulting map is contiguous:

Definition: Let ϕ,ψ : K → L be two simplicial maps between simplicial complexes. They are
said to be contiguous if for any simplex σ of K, ϕ(σ) ∪ ψ(σ) forms a simplex in L.

Contiguity gives a constructive form of homotopy applicable to simplicial maps between sim-
plicial complexes.

If ψ : K → L is a simplicial map, then it induces ψ′ : K ′ → L′ after subdivision. As there is no
way of knowing/picking compatible orders on VK and VL in advance, we get that on constructing

ϕK : K ′ → K

and

ϕL : L′ → L

that ϕLψ
′ and ψϕ will be contiguous to each other, but rarely equal.



4.3. HIGHER GENERATION BY SUBGROUPS 121

4.3.7 Dowker’s lemma

Returning to KR and LR, we order the elements of X and Y , then suppose y′ is a vertex of L′R,
so y′ = {y0, · · · , yp}, a simplex of LR and there is an element x ∈ X with xRyi, i = 0, 1, · · · , p. Set
ψy′ = x for one such x.

If σ = {y′0, · · · , y′q} is a q-simplex of L′R, assume y′0 is its least vertex (in the inclusion ordering)

ϕL(y′0) ∈ y′0 ⊂ y′ for each yi ∈ σ,

hence ψy′iRϕL(y′0) and the elements ψy′0, · · · , ψy′q form a simplex in KR, so ψ : L′R → KR is a
simplicial map. It, of course, depends on the ordering used and on the choice of x, but any other
choice x̄ for ψy′ gives a contiguous map.

Reversing the rôles of X and Y in the above, we get a simplicial map,

ψ̄ : K ′R → LR.

Applying barycentric subdivisions again gives

ψ̄′ : K ′′R → L′R,

and composing with ψ : L′R → KR gives a map

ψψ̄′ : K ′′R → KR.

Of course, there is also a map

ϕKϕ
′
K : K ′′R → KR.

Proposition 29 (Dowker, [55] p.88). The two maps ϕKϕ
′
K and ψψ̄′ are contiguous.

Before proving this, note that contiguity implies homotopy and that ϕϕ′ is homotopic to the
identity map on KR after realisation, i.e., this shows that

Corollary 5

|KR| ' |LR|.

�

The actual homotopy depends on the ordering of the vertices and so is not natural.

Proof of the Proposition:

Let σ′′′ = {x′′0, x′′1, · · · , x′′q} be a simplex of K ′′R and as usual assume x′′0 is its least vertex, then
for all i > 0

x′′0 ⊂ x′′i .

We have that ϕ′K is clearly order reversing, so ϕ′Kx
′′
i ⊆ ϕ′Kx

′′
0. Let y = ϕ̄ϕ′Kx

′′
0, then for each

x ∈ ϕ′Kx′′0, xRy. Since ϕKϕ
′
Kx
′′
i ∈ ϕ′Kx′′i ⊆ ϕ′Kx′′0, we have ϕKϕ

′
Kx
′′
iRy.
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For each vertex x′ of x′′i , ψ̄x
′ ∈ ψ̄′x′′i , hence as ϕ′Kx

′′
0 ∈ x′′0 ⊂ x′′i , y = ψ̄ϕ′Kxx

′′
0 ∈ ψ̄′x′′i for each

x′′i , so for each x′′i , ψψ̄
′x′′iRy, however we therefore have

ϕkϕ
′
K(σ′′) ∪ ψψ̄(σ′′′) =

⋃
ϕkϕ

′
K(x′′i ) ∪ ψψ̄;x′′i

forms a simplex in KR, i.e., ϕKϕ
′
K and ψψ̄′ are contiguous. �

To prove this we had to choose orders on the two sets, and thus we were working with the
non-degenerate simplices of the corresponding simplicial sets. (Abels and Holz, [1], use the neat
notation of writing N simp(R), etc. for the corresponding simplicial set, either dependent on order
or taking all possible orders, i.e., a p-tuple is a simplex in the simplicial set if its underlying set
of elements is a simplex in the simplicial complex. Which method is used make essentially no
difference most of the time. Their notation can be useful, but we will tend to ignore the difference
as the homotopy groups and homotopy types are independent of which approach one takes.)

4.3.8 Flag complexes

The construction of the barycentric subdivision is closely related to that of a flag complex of a
poset.

Suppose that P = (P,≤) is a partially ordered set (poset), then we can consider is as a category
and hence look at its nerve. This is the associated simplicial set of the flag complex of P, which
is a simplicial complex, whose construction uses some ideas that can be of use later on, so we will
briefly discuss how it relates to our situation.

Definition: A subset, σ,of P = (P,≤) is said to be a flag if it satisfies, for all x.y ∈ P , either
x ≤ y or y ≤ x.

A finite non-empty flag, thus, is a linearly ordered subset of P , i.e., is of the form {x0, . . . xp},
where x0 < . . . xn are elements of the set P .

Definition: Let P = (P,≤) be a poset. The flag complex, Flag(P) of P is the simplicial
complex having the elements of P as its vertices and in which a p-simplex will be a non-empty flag,
x0 < . . . xn. in P.

This is often also called the order complex of the poset.

Lemma 23 The flag complex construction gives a functor

Flag : Posets→ SimComp,

from the category of partially ordered sets and order preserving maps, to the category of simplicial
complexes and simplicial morphisms between them. �

As a simplicial complex, K, consists of a set, V (K) of vertices and a set S(K) ⊆ P (V (K))− {∅},
S(K) can naturally be ordered by inclusion to get a partially ordered set U(K) = (S(K),⊆). This
gives a functor,

U : SimpComp→ Posets.
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The composite functor,
Flag ◦ U : SimpComp→ SimpComp

is the barycentric subdivision functor, Sd.

If X is a set and U = {Ui | i ∈ I} is a family of subsets of X, we may think of U as being
ordered by inclusion and thus get a poset. (Of course, this will only be significant if there are some
inclusions between the Uis, for instance if U is closed under finite intersection.) This gives a poset,
(U ,⊆) and we will abbreviate Flag(U ,⊆) to F (U).

The links between nerves and flag complexes are strong.

Proposition 30 (Abels and Holz, [1], p. 312) Suppose given (X,U) as above, and that U is such
that, if U and V are in U and U ∩V is not empty, then U ∩V ∈ U , then there is a natural homotopy
equivalence,

|N(U)| ' |F (U)|.

We cannot give a full proof here as it involves a result, namely Quillen’s Theorem A, [112], that
will not be discussed in these notes. We can however give a sketch (based on the treatment in [1]).

Sketch proof: Abusing notation so as to consider the simplicial complex, N(U), as being the
same as the poset of its simplices, we define a mapping:

f : N(U)→ U

sending σ = {U0, . . . , Up} to Uσ = ∩pi=0Ui. This is order reversing. (Note that it, of course, needs U
to be closed under pairwise non-empty intersections.) Writing Uop for the poset, (U ,⊇), that is with
the opposite order, the poset U ↓ f of objects under some U ∈ Uop is just {τ ∈ N(U) | Uτ ⊇ U},
so is a directed poset, and hence is contractible. By Quillen’s theorem A, f induces a homotopy
equivalence as claimed. �

Remark: An interesting variant of these nerve and flag complex constructions combines some
aspects of the Vietoris complex construction with the idea of flags to construct a bisimplicial
set. A (p, q)-simplex will be pair consisting of a subset {x0, . . . , xp} of X together with a flag
U0 ⊂ U1 ⊂ . . . ⊂ Uq, such that all the xi are in U0. We will not explore this idea here as we have
not discussed bisimplicial sets in any detail yet.

Within geometric group theory, the term ‘flag complex’ is also applied to a closely related, but
distinct, concept. These ‘flag complexes’ are abstract simplicial complexes that satisfy a particular
defining property, rather than being defined by how they are constructed. We will see other similar
ideas later on in less geometric contexts, but for the moment will give a brief discussion based on
the treatment of Bridson and Haefliger, [23], p. 210.

Definition: Let L be a simplicial complex with set of vertices V (L). It satisfies the no triangles
condition if every finite subset of V (L) that is pairwise joined by edges, is a simplex. More precisely,
if {v0, . . . , vn} is such that for each i, j ∈ {1, . . . , n}, {vi, vj} is a 1-simplex of L, then {v0, . . . , vn}
is a simplex of L.

An alternative name for the condition are the ‘no empty simplices’ condition. It is also said
that in this case L is determined by its 1-skeleton. The point is
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Proposition 31 If simplicial complex, L, is an order complex of some partially ordered set then
it is determined by its 1-skeleton. �

The proof should be evident.

Geometric group theory contains many other examples of this sort of construction, especially
with relation to Coxeter groups. (Perhaps we will return to this later one)

4.3.9 The homotopy type of Vietoris-Volodin complexes

Returning to V (H), the second complex associated to a pair (G,H), it is possible to extract some
homotopy information from it using fairly elementary methods. To go into its structure more deeply
we will need to bring more explicitly in the group action of G as well, but that is for later.

The great advantage now is that as we know N(H) and V (H) have the same homotopy type
(after realisation) so we can use either when working out homotopy invariants. We can also use
N simp(H), or V simp(H) the corresponding simplicial sets, although, in fact, the Volodin space was
actually defined as a simplicial set. We will usually leave out the difference between the simplicial
complex and the simplicial set as that distinction is largely unnecessary.

If we look at any gHi ∈ H, then we have a subcomplex of V (H) consisting of those (g0, . . . , gp)
all of which are in gHi. In the simplest case, where g = 1, this is a copy of E(Hi), and, in general,
it is a translated copy of E(Hi), so each forms a contractible subcomplex.

Example: (already considered in section 4.3.1)

G = S3 = (a, b | a3 = b2 = (ab)2 = 1), with a = (1, 2, 3), b = (1, 2);

H1 = 〈a〉 = {1, (1, 2, 3), (1, 3, 2)},
H2 = 〈b〉 = {1, (1, 2)};
H = {H1, H2}

The intersection diagram given in our earlier look at this example, on page 113, is just the nerve,
N(H), having 5 vertices and 6 edges. The other complex, V (H), is almost as simple. It has 6
vertices corresponding to the 6 elements of S3, and each orbit yields a simplex

• H1 = {1, a, a2} gives a 2-simplex (and three 1-simplices),

• H1b = {b, ab, a2b} also gives a 2-simplex;

• H2 = {1, b} yields a 1-simplex, as do its cosets H2a and H2a
2.

We can clearly see here the contractible subcomplexes mentioned earlier. We have that V (H) looks
like two 2-simplices joined by 1-simplices at the vertices, (see below).
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2

1 a

a

b

ab

a b
2

V (S3, {〈a〉, 〈b〉})

As N(H) is a connected with 5 vertices and 6 edges, we know π1N(H) is free on 2 generators. (The
number of generators is the number of edges outside a maximal tree.) This same rank can be read
of equally easily from V (H) as that complex is homotopically equivalent to a bouquet of 2 circles,
(i.e., a figure eight). The generators of π1V (H) can be identified with words in the free product
H1∗H2 (one such being shown in the picture) and relate to the kernel of the natural homomorphism
from H1 ∗H2 to S3. The heavy line in the figure corresponds to a loop at 1 given by

1
(1,b) // b

(b,ab) // ab
(ab,a2)// a2

(a2,1) // 1

We write g0
(g0,g1)−−−−→ g1 as there is an edge, (g0, g1) joining g0 to g1 in V (H). We, thus, have that

there is a g and an index i such that {g0, g1} ∈ Hig, but the index and the elements are not
necessarily uniquely determined. We saw that this means that g1g

−1
0 ∈ Hi, so g1 = hg0 for some

h ∈ Hi, and we could equally well abbreviate the notation to g0
h−→ g1. Note that the only condition

required is that h is in some Hi, so the lack of uniqueness mention above is without importance.
In our example, we can redraw the diagram corresponding to the heavier loop and we get

1
b // b

a // ab
b // a2 a // 1

so the loop, representing an element in π1N(H), is given by the word baba ∈ C2 ∗ C3, which, of
course, is in the kernel of the homomorphism from C2 ∗ C3 to S3. The reason that this works is
clear. Starting at 1, each part of the loop corresponds to a left multiplication either by an element
of H1

∼= C3 or of H2
∼= C2. We thus get a word in H1 ∗H2

∼= C2 ∗ C3. As the loop also finishes at
1, we must have that the corresponding word must evaluate to 1 when projected down into S3.

Note that the two subgroups had simple presentations that combine to give a partial presenta-
tion of S3. The knowledge of the fundamental group, π1N(H), then provides information on the
‘missing’ relations.

In more complex examples, the interpretation of π1(V (H), 1) will be the similar, but sometimes
when G has more elements, N(H) may be easier to analyse than V (H), but the second may give
links with other structure and be more transparent for interpretation. The important idea to retain
is that the two complexes give the same information, so either can be used or both together.



126 CHAPTER 4. SYZYGIES, AND HIGHER GENERATION BY SUBGROUPS

Example: G = K4, the Klein 4 group, {1, a, b, c} ∼= C2 × C2, so a2 = b2 = c2 = 1 and ab = c;
H = {Ha, Hb, Hc} where Ha = {1, a}, etc. Set HK4 = (K4,H).

The cosets are Ha, Hab,Hb, Hba,Hc, Hca, each with two elements, so V (HK4) ∼= the 1-skeleton
of ∆[3]:

a

3333333
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1
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2222222 c

������

b

N(HK4) is “prettier” and a bit more ‘interesting’: Labelling the cosets from 1 to 6 in the order
given above, we have 6 vertices, 12 1-simplices and 4 2-simplices. For instance, {1, 3, 5} has the
identity in the intersection, {1, 4, 6} gives Ha ∩Hba ∩Hca, so contains a and so on. The picture is
of the shell of an octahedron with 4 of the faces removed.

2

1

6

4
3

5

N(HK4)

From either diagram it is clear that π1HK4 is free of rank 3. Again explicit representations for
elements are easy to give. Using V (H) and the maximal tree given by the edges 1a, 1b and 1c, a
typical generating loop would be

1→ a→ b→ 1,

i.e., (1, a, b, 1) as the sequence of points. There is an obvious representative word for this, namely

1
a // a c // b

b // 1 .

In general, any based path at 1 in an V (G,H) will yield a word in tH, the free product of the
family H. We will think of the path as being represented by a (finite) sequence (f(n)) of elements
in G, linked by transitions, hi in the various subgroups. Whether or not that representative is
unique depends on whether or not there are non-trivial intersections and “nestings” between the
subgroups in the family H, since, for instance, if Hi is a subgroup of Hj , then if f(n) → f(n+ 1)
using g ∈ Hi, it could equally well be taken to be g ∈ Hj . As we have mentioned before, the
characteristic of the Vietoris-Volodin spaces, V (G,H), is that there is only one possible element of
G linking f(n) to the next f(n+ 1) namely f(n+ 1)f(n)−1, but this may be in several of the Hi.
We thus have a strong link between π1(V (G,H)) and t

∩
H, the ‘amalgamated product’ of H over
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its intersections, and an analysis of homotopy classes will prove (later) that

π1(V (G,H), 1) ∼= Ker(t
∩
H → G),

since a based path (g1, g2, · · · , gn) ends at 1 if and only if the product g1 · · · gn = 1. These identifi-
cations will be investigated more fully shortly.

We note that composites of such ‘paths’ may involve two adjacent transitions between elements
being in the same Hi in which case we can use the rewriting system determined by the contractible
E(Hi) to simplify the representatives.

Example: The number of subgroups in H clearly determines the dimension of N(H), when
H = H(G,H). Here is another 3 subgroup example.

Take q8 = {1, i, j, k,−1,−i,−j,−k} to be the quaternion group, so i4 = j4 = k4 = 1, and ij = k.
Set Hi = {1,−1, i,−i} etc., so Hi ∩Hj = Hi ∩Hk = Hj ∩Hk = {1,−1} and let H = {Hi, Hj , Hk},
and Hq8 = H(q8,H).

Then N(Hq8) is, as above in Example 4.3.9, a shell of an octahedron with 4 faces missing. Note
however that V (Hq8) has 8 vertices and, comparing with V (HK4), each edge of that diagram has
become enlarged to a 3-simplex. It is still feasible to work with V (Hq8) directly, but N(Hq8) gives
a clearer indication that

π1(Hq8, 1) is free of rank 3.

Example: Consider next the symmetric group, S3, given by the presentation

S3 := (x1, x2 | x2
1 = x2

2 = 1, (x1x2)3 = 1)

Take H1 = 〈x1〉, H2 = 〈x2〉, so both are of index 3. Each coset intersects two cosets in the other
list giving a nerve of form (see below):

so π1N(H(S3,H)) is infinite cyclic.

Example: The next symmetric group, S4, has presentation

S4 := (x1, x2, x3 | x2
1 = x2

2 = x2
3 = 1, (x1x2)3 = (x2x3)3 = 1, (x1x3)2 = 1).

Take H1 = 〈x1, x2〉, H2 = 〈x2, x3〉, H3 = 〈x1, x3〉. H1 and H2 are copies of S3, but H3 is isomorphic
to the Klein 4 group, K4. Thus there are 4 + 4 + 6 cosets in all. There are 36 pairwise intersections
and each edge is in two 2-simplices. Each vertex is either at the centre of a hexagon or a square,
depending on whether it corresponds to a coset of H1, H2 or of H3. There are 24 triangles, and
N(S4,H) is a surface. Calculation of the Euler characteristic gives 2, so this is a triangulation of
S2, the two sphere. (Thanks to Chris Wensley for help with the calculation using GAP.)
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The fundamental group of N(S4,H) is thus trivial and, using the result mentioned above,

S4
∼= t
∩
Hi,

the coproduct of the subgroups amalgamated over the intersection.

Accepting Proposition 28 for the moment, we can examine an important class of examples.

Example: Some graphs of groups. Let us suppose that H = {H1, H2}, so just two sub-
groups of G, then we have

H1 t
H1∩H2

H2 → G.

This is an isomorphism if and only if N(H) is a connnected graph which has trivial fundamental
group, thus exactly when N(H) is a tree. The vertices of N(H) are the cosets in H1\GtH2\G and
H1g1 and H2g2 are connected by an edge if they intersect. This gives us one of the two basic types
of a graph of groups as defined by Serre, [117, 118],

H1 H1∩H2
H2

corresponding to a free product with amalgamation. Note this does not seem to give us the other
basic type of graph of groups which corresponds to an HNN extension. We will see another connec-
tion with this theory a bit later or, more exactly, we will see a connection with the generalisation
complexes of groups due to Corson, [48–50] and Haefliger, [69, 70] and developed extensively in the
book by Bridson and Haefliger, [23].

We have now seen, somewhat informally, discussions of the low dimensional homotopy invariants
of these two nerves, both in examples and, to some extent, in general. We turn now to more formal
calculations of those, and in the process will prove Proposition 28.

We will approach the determination of the invariants in an ‘elementary’ but reasonably formal
way. We will repeat some arguments that we have already seen partially to get everything in the
same place, but also to impose some more consistent notation.

The set, π0(V (G,H)), of connected components: The vertex set of V (G,H) is the set of
elements of G, so we have to work out when two vertices, g and g′, are in the same connected
component.

Suppose they are connected by a path, that is a sequence of edges, (〈g0, g1〉, 〈g1, g2〉, . . . 〈gn−1, gn〉),
in V (G,H) and for some n. We have that an edge such as 〈g0, g1〉 has d0〈g0, g1〉 = g1 and
d1〈g0, g1〉 = g0 and it is an edge because there is some Hα1 ∈ H and some x1 ∈ G such that
g0 and g1 are in the coset Hα1x1. Of course, this means that there are h0, h1 ∈ Hα1 with g0 = h0x1

and g1 = h1x1, hence that g0g
−1
1 ∈ Hα1 . (Conversely if g0g

−1
1 ∈ Hα1 , then both g0 and g1 are in

Hα1g1, so 〈g0, g1〉 is an edge.)

We thus have from our path that there are indices α1, . . . , αn such that gi−1g
−1
i ∈ Hαi for

each i, whilst g = g0 and g′ = gn. We then note that gg′−1 is in 〈
⋃
H〉, the subgroup generated

by the union of the subgroups in the family H, so, if g and g′ are in the same component, then
gg′−1 ∈ 〈

⋃
H〉.
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Conversely, suppose gg′−1 ∈ 〈
⋃
H〉, then there is a finite sequence of indices, α1, . . . , αn for

some n and elements hi ∈ Hαi such that gg′−1 = h1h2 . . . hn. We define g0 = g, gi = h−1
i gi−1 and

note that gi−1, gi ∈ Hαigi, thus giving us a path from g to gn = h−1
n gn−1 = h−1

n . . . h−1
1 g0 = g′.

We thus have proved that π0(V (G,H)) is in bijection with G/〈
⋃
H〉, that is the first part of

Proposition 28.

The fundamental group, π1(V (G,H), 1), and groupoid, Π1(V (G,H)): Although V (G,H)
comes with a natural choice of basepoint, namely 1, and we will eventually be looking at loops
at 1, it is more in tune with our just previous discussion to look at the fundamental groupoid
Π1(V (G,H)) rather than the fundamental group π1(V (G,H), 1) of V (G,H) based at 1. We will
sometimes abbreviate Π1(V (G,H)) to Π1H.

The set of objects of this groupoid will be the vertices of V (G,H) and so are the elements of G,
and the set of arrows Π1H(g, g′) will be the set of homotopy classes of paths from g to g′. We saw
that a path from, g to g′ corresponds to a finite sequence, h = (h1, h2, . . . , hn), of elements from
the various subgroups Hαi in H. It is convenient to write

g
(h1,h2,...,hn)−−−−−−−−→ g′ = g

h−→ g′,

where h−1
n . . . h−1

1 g = g′. We can see that given two composable paths

g
h−→ g′

h′−→ g′
′
,

the defining sequence of the composite is given by the concatenation of the two sequences,

hh′ = (h1, h2, . . . , hn, h
′
1, h
′
2, . . . , h

′
m).

Remark: This notation is not quite accurate. The h does not indicate from where the arrow,
so labelled, starts. Of course, it is visually clear, but ‘really’ we should denote the arrows by (g, h),
so then

(g, h) · (h−1g, h′) = (g, hh′),

or similar. This is clearly a form related to, but not identical, to some sort of ‘action groupoid’, but
that does not quite fit. For a start, it does not give a groupoid as where are the inverses? It does
give a category, however. (It is left for you to check that 〈g0, g0〉 is the identity at the ‘object’
g0.)

the paths between the vertices are not the actual arrows in the fundamental groupoid Π1H. For
that we need to divide out by relations coming from 2-simplices.

For any simplicial complex or simplicial set, K, one can form the fundamental groupoid, (also
called in this context the edge path groupoid), by taking the free groupoid on the directed graph
given by the 1-skeleton and then dividing out by the 2-simplices. (We will see this several times
later; see pages ??, and ??. It is the classical edge-path groupoid to be found, for instance, in
Spanier’s book, [121].) The arrows are sequences of concatenated edges and then, if 〈v0, v1, v2〉 is a
2-simplex, we add a ‘relation’

〈v0, v1〉〈v1, v2〉 = 〈v0, v2〉,

or if you prefer, rewrite rules:
〈v0, v1〉〈v1, v2〉 ⇔ 〈v0, v2〉.
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For Π1H, a 2-simplex in V (G,H) will, of course, be a triple, (g0, g1, g2), of elements of G contained
in some Hαx. We explore this in detail as before. There will be three elements, h0, h1, h2 in Hα

with gi = hix for i = 0, 1, 2 and thus gig
−1
j ∈ Hα, for each i and j.

Dividing out by these relations has several neat consequences which ‘control’ the paths and their
compositions. For instance, working in the simplicial set version of V (G,H), if we have 〈g0, g1〉 in
V (G,H), then 〈g1, g0〉 is there as well, and so is 〈g0, g0〉 and as 〈g0, g1, g0〉 is in V (G,H)2, we have
that

〈g0, g1〉〈g1, g0〉 = 〈g0, g0〉,

so 〈g0, g1〉 has 〈g1, g0〉 as its inverse. Another important result of these relations is that it allows
simplification of the path labelling sequences. Suppose we have a composite path

g0
h1−→ g1

h2−→ g2

which stays more than one step in a given coset, i.e., both h1 and h2 are in some Hα. In this case
we can clearly replace that path, up to homotopy, that is, modulo the relations, by

g0
h1h2−−−→ g2

as 〈g0, g1, g2〉 is a 2-simplex. This means that every arrow in Π1H has a representative whose
corresponding sequence h corresponds to an element of the coproduct (aka free product), tHi, of
the groups in H. This is still not a unique representative however. We may have a situation

g0
h1−→ g1

h2−→ g2
h3−→ g3

where h1, h2 ∈ Hi and h2, h3 ∈ Hj , so we will have an overlap with 〈g0, g1〉〈g1, g2〉〈g2, g3〉 rewriting
both to 〈g0, g2〉〈g2, g3〉 and to 〈g0, g1〉〈g1, g3〉, and so we have to amalgamate the coproduct over
intersections.

Let us be a bit more precise about this. We form up a diagram of the subgroups Hi in H,
together with their pairwise intersections, Hi ∩Hj . We write H = t

∩
H for its colimit.

Definition: Given a family, H, of subgroups of G, its free product or coproduct amalgamated
along the intersections is the colimit, H, specified above.

This group, H, can be given as simple presentation. Take as set of generators a set, X = {xg |
g ∈

⋃
Hj}, in bijection with the elements of the union of the underlying sets of subgroups in H,

and for relations all xh1xh2 = xh1h2 where h1 and h2 are both in some group, Hi, of the family.

The inclusion of each Hj into G gives a cocone on the diagram of groups, so induces a homomor-
phism, p : t

∩
H → G, which will be essential in our description. This homomorphism, p, thus takes

a sequence h = (h1, . . . , hn) representing some element of H and evaluates it within G mapping it
to the product h1 . . . hn ∈ G.

Clearly we have

Proposition 32 The fundamental groupoid, Π1H, has for objects the elements of G and an arrow
from g to g′ is representable, uniquely, by an element h in t

∩
H such that g = p(h)g′. �

The proof is by comparison of the two presentations.
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Corollary 6 There is an isomorphism

π1H ∼= Ker(p : t
∩
H → G)

Proof: The group π1(V (G,H), 1) is the vertex group at 1 of the edge path groupoid, so consists
of the hin H, which evaluate to 1, since here g = g′ = 1, i.e. the vertex group is just Ker p. �

This means that we have p : H → G, whose ‘cokernel’, G/p(H), ‘is’ π0(V (G,H)) and whose
kernel is π1(V (G,H), 1).

What about π2V (H)? We will limit ourselves, here, to a special case, and will merely quote
a result from the paper of Abels and Holz, [1]. We suppose as always that we are given (G,H)
and now assume that we use the standard presentation Pj := (Xj : Rj) of each Hj . Combining
these we get X =

⋃
Xj , R =

⋃
Rj . We have H is 2-generating for G if and only if P = (X,R) is

a presentation of G. (That is nice, since it says that there are no hidden extra relations needed,
and that corresponds to the intuitions that we were mentioning earlier. There is better to come!)
Assuming that P is a presentation of G, we have a module of identities, πP . We also have all
the πPj , the identity modules for each of the presentations, Pj . The inclusions of generators and
relations induce morphisms of the crossed modules, C(Pj) → C(P), and hence of the modules
πPj → πP , although here there is the slight complication that this is a morphism of modules over
the inclusion of Hj into G, which we will not look further into here. We let πH be the sub G-module
of πP generated by the images of these πPj . We can think of πH as the sub-module of πP consisting
of those identities that come from the presentations of the subgroups.

In the above situation, i.e., with standard presentations for the subgroups, we have ([1] Cor.
2.9.)

Proposition 33 If H is 2-generating, then there is an isomorphism:

π2(N(H) ∼= πP/πH.

�

We should therefore, and in this case at least, interpret π2(N(H) as telling us about the 2-syzygies
that are not due to the presentations of the subgroups. We will give shortly a neat example of this
but first would note that this does not interpret the 2-type of V (H) in general, and that somehow
is a lack in the theory as developed so far. Abels and Holz do extend thie away from the standard
presentations of the subgroups, but this requires a bit more than we have available at this stage in
the notes so will be ‘put on hold’ until later.

This gives all the easily available data on these Vietoris-Volodin complexes as far as their
elementary homotopy information is concerned. We can, and will, extract more later on, but now
want to look at the main example for their original introduction.

4.3.10 Back to the Volodin model ...

Our ‘more complex family’ of section 4.3.3 leads to a link with higher algebraic K-theory in the
version developed initially by Volodin. The usual approach, however, uses a slightly different
notation and for some of its details ends up looking different, so here we will give the version of
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that example nearer to that given by, for instance, Suslin and Wodzicki, [122], or Song, [119]. Let,
as before, R be an associative ring, and now let σ be a partial order on {1, . . . , n}. If i is less that

j in the partial order σ, it is convenient to write i
σ
< j. (Note that this means that some of the

elements may only be related to themselves and hence are really not playing a role in such a σ.)
We will write PO(n) for the set of partial orders of {1, . . . , n}.

Definition: We say an n× n matrix, A = (aij) is σ-triangular if, when i 6
σ
≤ j, aij = 0, and all

diagonal entries, aii are 1.

We let T σn (R) be the subgroup of G`n(R) formed by the σ-triangular matrices.

Lemma 24 If n ≥ 3, T σn (R) has a presentation with generators xij(a), where i
σ
< j and a ∈ R,

and with relations:

xij(a)xij(b) = xij(a+ b) i
σ
< j, a, b ∈ R

and

[xij(a), xjk(b)] = xik(ab) i
σ
< j

σ
< k, a, b ∈ R,

xij(a)xk`(b) = xk`(b)xij(a), i 6= `, j 6= k, a, b ∈ R.

�

Remark: In fact, Kapranov and Saito, [84], mention that, not only is this a presentation of T σn (R),
but with the addition of the syzygies that they describe (and which up to dimension 2 are those
given in our section 4.1.2) gives a complete set of syzygies, of dimension 3.

We can ‘stablise’ the above, since it σ is a partial order on {1, . . . , n}, then it extends uniquely
to one on {1, . . . , n+ 1} by specifying that n+ 1 is related to itself in the extended version, but to
no other. (The notation and treatment for this is not itself that ‘stable’ and some sources do not
go into a detailed handling of this point, presumably because it is clear what is going on.) We will
write Tn = (G`n(R), Tn), where Tn = {T σn (R) | σ ∈ PO(n)}, and then, letting n ‘go to infinity’
write T for the corresponding system based on G`(R) with all σ-triangular subgroups for all partial
orders having finite ‘support’, i.e., in which outside some finite set, (its support), the partial order
is trivial.

Proposition 34 For n ≥ 3, the subgroup of G`n(R) generated by the union of the T σn (R) is En(R),
the elementary subgroup of G`n(R).

Proof: This should be more or less clear as, by definition, any elementary matrix is σ-triangular
for many σ’, and conversely, any T σn (R) is given as a subgroup of En(R). �

Corollary 7 The Volodin nerve, V (T), has

π0V (T) ∼= K1(R).

�
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The obvious next question to pose is what π1(V (T), 1) will be. We know it to be the kernel of
t
∩
T σn (R)→ E(R), and the obvious guess would be that it was Milnor’s K2(R). That’s right. Proofs

are given in several places in the literature, but usually they require a bit more machinery than
we have been assuming up to this point in these notes, so we will not give one of those proofs
here. The most usual proofs use the natural action of G on N(H) and a covering space argument.
We will mention this in a bit more detail after we have looked at a sketch proof and will explore
aspects of this sort of approach more in a later chapter, but here will attempt to give that sketch
proof which, it is hoped, seems more direct and which starts from the descriptions of π0V (T) that
are consequences of what we have already done above. (We will still need a covering space-type
argument, which, since central extensions behave like covering spaces from many points of view,
is suggestive of a general approach that is, it seems, nowhere given in the literature with the
conceptual simplicity it seems to deserve. Kervaire’s treatment of universal central extensions, [85],
perhaps goes some way towards what is needed.) We start by looking at paths in V (T), especially,
but not only, those which start at 1. We will be, in part, following Volodin’s original treatment in
[133] as this is very elementary and ‘constructive’ in nature. As we said above, he uses covering
space intuitions as well, as this seems almost optimal for the identification we need. (Remember
that one classical construction of universal covering spaces is from the space of paths that start at
the base point, followed by quotienting by fixed end point homotopy as a relation.)

A path in V (T) as it is of finite length, must live in some V (Tn). We thus can represent it by
a pair, (g, t), with t = (t1, . . . , tk) for some k, a word with each ti in some T σin (R), and g in En(R)
which will be the starting element of the path. (Of course, this representation is not unique, because
of the amalgamated subgroups, and we will need to break each ti up as a product of elementary
matrices shortly. The non-uniqueness will be taken account of later on.)

We say that ti is a segment of the path, and that the paths is elementary if all the tis used are
elementary matrices.

We now need some ‘elementary’ linear algebra. We will look at it with respect to the standard
maximal linear order on {1, . . . , n} and hence for upper triangular matrices.

Lemma 25 Let B = (bij) be an upper triangular matrix (with 1s on its diagonal), so bij is zero if
j < i. There is a factorisation

B =
∏
(i,j)

eij(bij),

with the order of multiplication given by increasing lexicographic order, so (i, j) > (i1, j1) if either
a) j > j1 of b) j = j1 and i > i1. �

The proof should be obvious.

We can replace tk by a path consisting only of elementary matrices (for the ordering σi) and

with the order of terms given by a lexicographic order in the (i, j)s relative to
σi
<. The resulting

tk =
∏

(i,j) eij(bij) and can be ‘lifted’ to an element

tk =
∏
(i,j)

eij(xij) ∈ Stn(R).

This element maps down to the element tk in En(R).
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Suppose s is a loop, based at 1, in V (T), but consisting just of elementary matrices in some
T σkn (R). (We will say s is an elementary loop. We will work with the standard linear order.) As s is
a loop at 1, it has a representation as (1, s), where s = (s1, . . . , sN ) and the sks are in lexicographic
order, each sk is some eij(aij) and, as the path s is a loop,

∏
(i,j) eij(aij) = 1.

Lemma 26 If s is an elementary loop at 1 in Tn(R), then its lift s is 1 ∈ Stn(R).

Before giving a proof, remember the intuition that seems to be built in Volodin’s approach. The
T σn (R) are seen as patches over which there is a way of lifting paths, so you decompose a long
path into bits in the various patches, and then lift them successively. The lifted bits give elements
in Stn(R), and ‘up there’ we have divided out by the homotopy that comes from the relations /
rewriting 2-cells. In each patch we expect to get that the lift of s that we are using gives a trivial
element (i.e. something like a null-homotopic loop. We thus expect to have to use the presentation
of St(R) and, in particular, the embryonic homotopies given by the rewriting 2-cells / relations.
As we will see that is exactly what happens.

Proof: We let m be larger than all the i, j involved in the expression for s. (We will gen-
erally write xij(a) etc where a is variable and is really just a ‘place marker’.) As xim(a)xkj(b) =
xkj(b)xim(a) for i 6= j, k 6= m, and

xim(a)xki(b) = xkm(−ab)xki(b)xim(a) = xki(b)xkm(−ab)xim(a),

we can move all terms of form xim(a) to the right of the product expression for s. In Stm(R), we
thus have ∏

i<j≤m
xij(a) =

∏
i<j≤m−1

xij(a) ·
∏
i<m

xim(a),

where, as we said, the a is just a place marker. We thus have that s in St(R) can be decomposed
as the product of two parts corresponding to loops (down in E(R)). These are

∏
i<j≤m−1 xij(a)

and
∏
i<m xim(a). (As this latter is in the subgroup of Stm(R) generated by the xim(a), this must

itself evaluate to 1 as the product does, hence also the other factor must.) Working on the product∏
i<m xim(a) and using the facts firstly that the terms commute with each other by the first rule

we recalled above, and then using the first Steinberg relation: St1 : xim(a)xim(b) = xim(a+ b), we
can now check that this word must itself be trivial as it evaluates to 1.

We now can use backwards induction on m to gradually you get back to the minimal value
possible and get the result. �

Corollary 8 If s is an elementary loop in some T σn (R), then the corresponding lifted word in St(R)
is trivial.

Proof: We have done most of this, except it was in the case of the standard linear order. One can
either adapt the above to the general case, or more neatly note that s conjugates, using permutation
matrices, to give an element in that linear case. The lifting goes across to St(R) and so the result
follows after a bit of checking. �

Now look at any path in V (T), starting at 1. Take an elementary representative and examine

the initial segment, 1
t1−→ t−1

1 , so t1 ∈ T σ1n (R). We can lift t1 to give an element t1 ∈ Stn(R).
This will, in general, depend on the choice of σ1, but if σ′1 is another possible partial order (i.e.,
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t1 ∈ T σ1n (R) ∩ T σ
′
1

n (R), then the resulting two lifts of t1 will form a ‘loop’ t1 · t′
−1
1 in Stn(R), but

then this loop must be trivial by the lemma and its corollary. We pass to the next ‘node’ in the
path and continue. The next segment does not start at 1, but the argument adapts easily as the
corresponding labelling element in the coproduct with amalgamation is all that is used.

This gives that each path s in V (T) uniquely determines an element s in St(R). It is now fairly
clear where the argument has to go. The standard classical construction of a universal covering
space is via paths starting at some base point ‘modulo’ fixed endpoint homotopy, so one checks
that homotopic paths lift to the same element of St(R). (This is Volodin’s Lemma 3.4 of [133], but
it is easy to see how it is to go.) Volodin is using the ‘patches’ given by the T σn (R) to lift a path in
En(R). (This mix of topological intuition with combinatorics and algebra is the starting point of
Bak’s theory of global actions, [8, 9], that was mentioned earlier.)

It is now feasible to complete the proof à la Volodin, that the universal cover of V (En(R), {T σn (R)})
is ‘related to’ Stn(R), but that is not really satisfactory as it mixes the categories in which we are
working. (A simplicial complex is not a group!) We have a more limited aim, namely to note that
if we have an element in π1(V (T), 1), then we can pick a loop, s, representing it. We can lift s
uniquely by lifting over each ‘patch’ T σn (R) that it uses, to obtain an element in St(R), but as it
is a loop its evaluation, back down in G`(R) will be trivial. (Topologically its endpoint is over
the basepoint!) It is in the kernel of the homomorphism from St(R) to G`(R), so determines an
element of K2(R). Finally one reverses the argument to say that if s ∈ K2(R), then it is in the
image of this morphism. We have thus given an idea of how Volodin’s theorem, below, can be
proved, using fairly elementary ideas.

Theorem 7 (Volodin, [133], Theorem 2)

π1(V (T), 1) ∼= K2(R).

�

Remark: The usual proofs of this result given in more recent sources tend to use the classifying
spaces, BT σn (R) together with the induced mappings to BG`(R) to obtain⋃

BT σn (R)→ BG`(R),

which is then shown to give the ‘homotopy fibre’ of the map to BG`(R)+. This does seem slightly
too reliant on spatially based methods from homotopy theory and a more purely combinatorial
group theoretic or ‘rewriting’ analysis of the constructions, related to Volodin’s original proof,
should be possible.

We hope to return to the study of the Volodin model for higher algebraic K-theory later on,
but are near to the limit of what can be done with the limited tools at our disposal here, so will
put it aside for the moment.

4.3.11 The case of van Kampen’s theorem and presentations of pushouts

The above example / case study coming from algebraic K-theory is very rich in its structure and
its applications, but is complex, so we will return to a simpler situation to indicate the direction
that this theory of ‘higher generation by subgroups’ can lead us to. To motivate this recall the
formulation of the classical form of van Kampen’s theorem.
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Theorem 8 (van Kampen) Let X = U ∪ V , where U , V and U ∩ V are non-empty, open and
arc-wise connected. Let x0 ∈ U ∩ V be chosen as a base point, then the diagram

π1(U ∩ V )
jV ∗ //

jU∗
��

π1(V )

iV ∗
��

π1(U)
iU∗

// π1(X)

is a pushout square of groups, where each fundamental group is based at x0. �

Proofs can be found in many places in ‘the literature’, for instance, in Massey’s introduction, [96],
or in Crowell and Fox, [52]. A proof of a neat more general form of the result is given in Brown’s
book, [27]. There the result is given in terms of fundamental groupoids, which is very useful for
many applications and several variants are also given there. We may have need for some of these
later on, but for the moment what we want is the version in terms of group presentations, cf. [52],
page 71, for example. This just translates the above pushout result into one about presentations.

Theorem 9 (van Kampen: alternative form) Let X = U ∪ V , etc., be as above. Suppose

• that π1(U, x0) has a presentation, (X : R),

• that π1(V, x0) has a presentation, (Y : S),
and

• that π1(U ∩ V, x0) has one, (Z : T),

then π1(X,x0) has a presentation,

(X ∪Y : R ∪ S ∪ {(jU∗(z))(jV ∗(z))−1 | z ∈ Z}),

where jU∗(z) is a word in the free group, F (X) representing jU∗(z), and similarly for jV ∗(z). �

This form gives a way of calculating a presentation, P, of π1(X,x0) given presentations of the
parts. If we see a presentation as the first part of a recipe to construct a resolution of a group, or
alternatively to construct an Eilenberg-Mac Lane space for the group, then this is useful and, of
course, is used in courses on elementary algebraic topology to calculate the fundamental groups of
surfaces. The obvious points to note are that the we take the union of the two generating sets, X
and Y, to be the generating set of π1(X,x0), but use the generators in Z to help form relations
in the pushout presentation, then we use the union of the two sets of relations to give the other
relations (which seems sort of natural). This leaves a query. Whatever happened to the relations
in the presentation of π1(U ∩ V, x0)? To get some idea of what they do, think along the following
somewhat vague lines. As those relations correspond to maps of 2-discs into the complex, K(P),
of the presentation, P, used to ‘kill’ the corresponding words, we have two 2-discs with ‘the same’
boundary and hence map of a 2-sphere into K(P) with no reason for it being homotopically trivial.
This suggests that the relations in T are going to give homotopical 2-syzygies, and this is the case.
It also suggests that to build an Eilenberg-MacLane / classifying space from the presentation, P, we
could do worse than take the pushout of the complexes of the various other presentations involved.
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It is a good idea to abstract this out a bit away from the van Kampen situation for the moment.
We suppose that G = A∗CB is a ‘free product with amalgamation’, so we can describe G by means
of a pushout of groups:

C
j //

i
��

B

i′

��
A

j′
// G

It is a standard result that if i and j are injective, then so are i′ and j′.

The van Kampen examples can be too complex to work through, but we can in fact gain some
intuition about them from one of the simplest examples of such situations. Consider the trefoil
knot group, G(T2,3). This has a presentation (a, b : a3b−2 = 1). It is therefore an amalgamated
coproduct / pushout of three infinite cyclic groups:

(z : ∅) j //

i
��

(b : ∅)

��
(a : ∅) // G(T2,3)

where i(z) = a3 and j(z) = b2. We note that all the input presentations are with empty sets of
relations, yet G(T2,3) has a single non-trivial relation. If we took the complexes of each presentation,
we would merely have a circle for each, and that of the presentation of G(T2,3) has to have a 2-cell
in it, hence we can see that the construction of the presentation of G(T2,3) does not just result from
a ‘pushout of presentations’ ! (In fact, what is needed is a homotopy pushout, or, in more general
situations than the pushout of a diagram of group, a homotopy colimit. We will say a bit more on
this shortly.) We now return to our general situation.

Our abstracted situation is that we have presentations,PQ = (XQ : RQ) for Q = A,B and C,
and get the corresponding presentation for G, given by the analogue of that in the above discussion.
We take complexes K(PQ modelling each of the presentations in turn. The morphisms between
the groups in the diagram lift give a diagram

K(PC)
j∗ //

i∗
��

K(PB)

i′∗
��

K(PA)
j′∗

// K(PG)

but as the lifts have to be chosen, they are only determined up to homotopy, and this will in general
only be a square that is homotopy coherent, i.e., commutative up to a specified homotopy, (see the
later discussion in Chapter 5). In fact, as we do not know that i∗ and j∗ are injective, the result
need not be a pushout, so does not tell us much. An alternative is to see what we can construct
from the ‘corner’:

K(PC)
j∗ //

i∗
��

K(PB)

K(PA)
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from this we can take its ‘homotopy pushout’ which begins to be more like the square we had. We
have not met this construction yet; it is a double mapping cylinder. This would form a cylinder
on K(PC) and use the maps to glue copies of the other spaces to its two ends. In here, we will be
getting a cylinder with the discs corresponding to the relations in PC and these will to cylindrical
2-cells in that double mapping cylinder and hence to a potential homotopical 2-syzygy. This will
be picked up by the crossed module of that space or better still the crossed complex. An analysis of
this can be found in Brown-Higgins-Sivera, [31], starting on page 338. This is based on an earlier
paper by Brown, Moore, Porter and Wensley, [33]. (As an exercise, it is worth looking at the
trefoil group from this viewpoint and to draw what intuitively the mapping cylinder must look
like ... as much as this is feasible.)

We have used this discussion above for two main reasons, first to suggest that the situation
naturally leads to having to take the homotopies seriously and that implies a study of (at least
some) homotopy coherence theory, and homotopy colimits in particular. The other reason is that
it suggests that it provides a key set of concepts, as yet at a vague intuitive level, to understand
more fully the theory of ‘higher generation by subgroups’ of Abels and Holz, [1]. If we get our
group G, and a 1-generating family of subgroups, H, and want to work out the ‘syzygies of G’, i.e.,
some combinatorial information to enable a (crossed) resolution or a small model of a K(G, 1) to be
formed, then the idea is that by calculating the syzygies of each of the input groups, the n-syzygies
of G should involve those of the His, but also the (n − 1)-syzygies of the pairwise intersections,
Hi∩Hj , and then, why not, the (n−2)-syzygies of the triple intersections, and so on. We certainly
do not have the machinery to pursue this here, and so will leave it vague.

(In addition to the above references on the pushout, which use homotopy colimits of crossed
complexes over groupoids, the original paper of Abels and Holz, [1], also uses homotopy colimit
techniques, but this time with chain complexes. It uses these to prove results on the homological
finiteness properties of certain groups. That paper is well worth reading. This use of homotopy
colimits is also explored in Stephan Holz’s thesis, [75].)



Chapter 5

Homotopy Coherence and Enriched
Categories.

We are getting to a point where we need some more powerful insights on homotopy coherence and
descent, so in the next few chapters we will examine these topics in some detail. This will give us
some useful tools for later use. (These chapters are quite long can be skimmed at first reading, but
as the tools will be used later, the material is important for later sections.)

At several points in earlier chapters, we have had to replace colimits by ‘pseudo’ or ‘lax’ colimits.
We have, especially when ‘categorifying’, had to replace equality or commutativity in some context,
by ‘equivalence’ or ‘coherence’. We have now some experience in handling such ideas and hopefully
have built up some intuition, gaining a ‘feel’ for the general method. It is time now to devote some
space to solidifying that intuition a bit further as we will be needing to go in more deeply in future
sections.

We will not give a full treatment however as that would take up a lot of space and also would
detract from the development of gerbes as such. We will discuss various aspects of the problem
and various approaches. Some will involve homotopy theoretic viewpoints, others multiple category
theoretic ones. The point is that each approach models certain aspects more transparently than
others, so it helps to have a ‘multiple model’ view. There are possible ‘unified models’, but they
tend to be better handled once the partial approaches - simplicial, homotopy theoretic, n-categorical
ones - have been at least met and partially mastered.

5.1 Case study: examples of homotopy coherent diagrams

(Before we get into some examples, it is useful to introduce a bit of terminology that we will use
from time to time. If we have a ‘diagram’ in a category A, then we have, more exactly, some
functor, F : J → A. We will refer to J as the ‘template’ of the diagram, as it gives us the shape
of the diagram, that is, what the diagram ‘looks like’. We may sometimes give just a graph or
more likely a directed graph as a ‘template’ in which case the corresponding free category on that
directed graph will be the domain of the functor. We will also extend the use of ‘template’ to other
similar situations in particular to homotopy coherent diagrams.)

139
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The situation we will start with is a triangular diagram

K1

k12

!!CCCCCCCC

K0

k01
=={{{{{{{{

k02
// K2

of three spaces or, preferably, simplicial sets, and three maps such that, for the moment, k12 ◦k01 =
k02. We can, and will, consider this as a functor

K : [2]→ S,

where, as always, [2] is the ordinal {0 < 1 < 2}, considered as a small category. (It is the ‘template’
for this type of diagram.)

Suppose now that we want to change each Ki to a corresponding object, Li, which is homotopy
equivalent to it. This often occurs when, for instance, the Kis are K(G, 1)s, and so have only
their fundamental groups non-trivial amongst their homotopy groups. It may be thought useful to
replace the Kis by smaller or simpler models that reflect the structure of the π1(Ki)s. Suppose,
therefore, that we have specified maps

fi : Ki → Li
gi : Li → Ki

}
i = 0, 1, 2,

and homotopies

Hi : IdKi ' gifi
Ki : IdLi ' figi

}
i = 0, 1, 2.

We had a commutative diagram linking the Kis. Can we construct some similar diagram from the
Lis? The answer is ‘yes, but . . . ’.

We, of course, need some maps `ij : Li → Lj , and there seems only one possible way of obtaining
them in a sensible way, namely, use g to get back to K, go around the K-diagram and then pop

back to L using f , i.e., define `ij : Li → Lj by `ij := (Li
gi→ Ki

kij→ Kj
fj→ Lj). This seems the only

way - yet it will not work in general. Yes, these `ijs will exist, but

L1

`12

  AAAAAAAA

L0

`01
>>}}}}}}}}

`02
// L2

will not commute in general. In fact,

`12 ◦ `01 = f2k12g1f1k01g0.

whilst

`02 = f2k02g0 = f2k12k01g0,
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so we have g1f1 blocking the way! As IdK1 ' g1f1, `02 ' `12 ◦ `01, and so the triangle is homotopy
commutative, but it is more than that since we were told a homotopy K1 : IdK1 ' g1f1, and so
have a specific homotopy that does the job, namely L012 := f2k12K1(k01g0 × I).

L1

`12

  AAAAAAAA

L0

`01
>>}}}}}}}}

`02
//

� �� �KS

L2

Remark: The homotopies we used above went from the identity maps to the composites. We
could equally well have written them around the other way. The only difference would be that
the arrow in the above diagram would go down instead of up. The conventions here vary from
source to source. The above is useful here because it will reflect the cocycle formulae that we have
already used, but at other points in our discussion, it will not necessarily be the optimal choice.
As homotopies are reversible, it essentially makes no difference here, but it can lead to different
formulae and some confusion if this is forgotten.

Now we try to do a slightly harder example. The input this time will be

K : [3]→ S,

together with fi : Ki → Li, gi : Li → Ki, Hi, and Ki, for i = 0, . . . , 3. We have maps `ij as before,
but also homotopies Lijk : `ik ' `jk◦`ij for i < j < k within [3], given by Lijk := fkkjkKj(kijgi×I).

(Any doubts as to why we are going on this excursion into homotopy coherence should be
beginning to dissipate by now!) We thus have a tetrahedral diagram

L1

`12

��-
-------------
`13

&&LLLLLLLLLLLL

L0
`03

`01
AA�������

`02 &&LLLLLLLLLLLL
// L3

L2

`23

AA�������

with homotopies, as above, in each face.
We saw this sort of diagram when we were discussing fibred categories and, in particular, the

3-cocycle condition which mysteriously came out to be written as a square (cf. page ??). Here also
we can analyse our tetrahedral diagram as a square with vertices corresponding to paths through
the diagram from L0 to L3 and with edges corresponding to the homotopies in the faces. Of course,
for instance, L123 : `13 ' `23 ◦ `12, so it contributes a ‘whiskered homotopy’ L123 ◦ `01 : `13 ◦ `01 '
`23 ◦ `12 ◦ `01. (Note we are here being lazy, using the convenient notation L123 ◦ `01 instead of the
more exact L123 ◦ (`01 × I), which, however, is sometimes essential!)

`03
L023 +3

L013

��

`23`02

`23◦L012

��
`13`01 L123◦`01

+3 `23`12`01
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We can compose these homotopies to get two, in general distinct, homotopies from `03 to `23`12`01,
explicitly calculable in terms of K1 and K2. (A useful observation here is that the indices 1 and 2 are
in the middle of all the homotopies’ indices, never 0 or 3, as should be clear from the constructions,
so our homotopies use K1 and K2, not the others.)

Remark: These can be viewed as defined from L0 × I to L3. This is most easily seen in the
topological case as we have an obvious homeomorphism, [0, 1] ∼= [0, 1

2 ] ∪ [1
2 , 1], which allows a neat

concatenation of homotopies. It also works well in the simplicial case provided we have the our
objects satisfy the Kan condition, i.e., are Kan complexes.

Simplicially the composition of homotopies is done via a choice of filler. We have two maps

L0 ×∆[1]→ L3

i.e., two 1-simplices in S(L0, L3), which as we saw earlier (cf. page ??) is the simplicial set of maps
of various ‘degrees’ from L0 to L3, given precisely by

S(K,L)n = S(K ×∆[n], L),

in general. From the two composable homotopies, we obtain a map

L0 × Λ1[2]→ L3

or equivalently a (2,1)-horn
Λ1[2]→ S(L0, L3).

If L3 is a Kan complex, then so is S(L0, L3). (If you have not met the proof, it is worth looking up.
You should find it in more or less any text with a section on simplicial homotopy theory.) From
our (2, 1)-horn, we will get a filler:

∆[2]→ S(L0, L3),

and the di-face of this is a composite homotopy.) Note it is a, not the, composite homotopy, as we
obtained a filler by the Kan condition and could not demand it had any special properties such
as ‘uniqueness’. This point is also valid working with topological homotopies. We conveniently
compose homotopies by gluing one copy of a cylinder X × I to a second one and rescaling. The
usual formula looks like

H ∗K(t) =

{
H(2t) 0 ≤ t ≤ 1

2
K(2t− 1) 1

2 ≤ t ≤ 1,
,

but this is just one very convenient composite and we could have used many other conventions, for
instance, H(3t) for 0 ≤ t ≤ 1

3 , and K(3t− 2) for 1
3 ≤ t ≤ 1. Any homeomorphism h : [0, 1]→ [0, 2]

such that h(0) = 0 and h(1) = 2 will give another composite homotopy.)
That being said, the really neat way to treat this square is ... as a square! We need to specify

a 2-fold homotopy, so want a map θ : L0 × I2 → L3, which fills the square, i.e., θ(x, s, t) ∈ L3 for
(s, t) ∈ I2 and for x ∈ L0, with

θ(x, s, 0) = L023(x, s),

θ(x, s, 1) = L123(`01(x), s),

θ(x, 0, t) = L013(x, t),

θ(x, 1, t) = `23L012(x, t).
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In the topological case, such a θ would need, of course, to be continuous, but would then be a
suitable level 2 homotopy, L0123, completing our solution. We have not said how to construct this
θ, but you have all the necessary machinery to do so. It only uses the elements of the data that
have already been given. Its construction is quite useful to do yourselves, as it shows you how
the low dimensional homotopies combine quite simply to give the level 2 homotopy that is needed.
It uses a bit of topology, but only in a minimal way.

If we need a simplicial analogue of this, then we would need L0123 ∈ S(L0 × ∆[1]2, L3). Our
simplicial mapping space, S(L0, L3), initially looks slightly wrong for this since we need two 2-
simplices with one matching common d1-face to get ∆[1]2 and all the simplices in S(L0, L3) have
form L0×∆[n]→ L3. In fact this is easy to get around. The category of simplicial sets is Cartesian
closed with its internal mapping object given exactly by this S(K,L) construction, so we have, for
each triple, K, L, M , of simplicial sets;

S(K × L,M) ∼= S(K,S(L,M)).

(If you are not familiar with Cartesian closed categories, then do glance at a suitable survey article
or category theory textbook, e.g. [21]. The Wikipedia article on the subject will also give you some
basic facts and ideas about the concept. You should also consult the n-Lab.)

We can use this isomorphism to convert our desired level 2 homotopy into a simplicial map

∆[1]2 → S(L0, L3).

(For formalities sake, it may be better to think of L0123 as being

∆[1]2 × L0 → L3

instead of as having domain L0 ×∆[1]2.)
This is using the simplicially enriched category structure of S, and allows us to produce and

interpret a similar construction in many other simplicially enriched contexts. To do this we will
need some more elements of the notions of simplicially enriched categories, also called S-categories.
These are just one of the ways of encoding homotopy coherence, but they fit neatly into our general
approach. Other related concepts would include dg-categories that is, differential graded categories,
which are categories enriched over the category of chain complexes. We will have a look at these
later.

5.2 Simplicially enriched categories

These are, intuitively, just categories with simplicial ‘hom-sets’. We will also call them S-categories.

5.2.1 Categories with simplicial ‘hom-sets’

We assume we have a category, A, whose objects will often be denoted by lower case letter, x, y, z,
. . . , at least in the generic case, and for each pair of such objects, (x, y), a simplicial set, A(x, y),
is given. For each triple x, y, z of objects of A, we have a simplicial map, called composition,

A(x, y)×A(y, z) −→ A(x, z);

and for each object x, a map,
∆[0]→ A(x, x),
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that ‘names’ or ‘picks out’ the ‘identity arrow’ in the set of 0-simplices of A(x, x). This data is to
satisfy the obvious axioms, associativity and identity, suitably adapted to this situation.

Definition: Such a set-up, as detailed above, will be called a simplicially enriched category or,
more simply, an S-category.

Enriched category theory is a well established branch of category theory. It has many useful
tools and not all of them have yet been explored for the particular case of S-categories and its
applications in homotopy theory.

Warning: As we have mentioned before, some authors use the term ‘simplicial category’
for what we have termed a simplicially enriched category. There is a close link with the notion
of simplicial category that is consistent with usage in simplicial theory per se, since any (small)
simplicially enriched category can be thought of as a simplicial object in the ‘category of categories’,
but a simplicially enriched category is not just a simplicial object in the ‘category of categories’
and not all such simplicial objects correspond to such enriched categories. That being said, that
usage need not cause problems provided you are aware of the usage in the paper to which reference
is being made.

5.2.2 Examples of S-categories

We have seen the first example several times before, but will repeat it for convenience:

(i) S, the category of simplicial sets:
here

S(K,L)n := S(∆[n]×K,L);

Composition : for f ∈ S(K,L)n, g ∈ S(L,M)n, so f : ∆[n]×K → L, g : ∆[n]× L→M ,

g ◦ f := (∆[n]×K diag×K−→ ∆[n]×∆[n]×K ∆[n]×f−→ ∆[n]× L g→M);

Identity : idK : ∆[0]×K
∼=→ K.

Notational remark: Perhaps a word on notation is needed here. Above we have used
S(∆[n] × K,L), but as the product is symmetric, we could equally well have used S(K ×
∆[n], L), and although in writing these notes I have tried to be consistent for the first of
these, there will certainly be instances of the second convention that have crept in as both are
used in the source material that I have used! It makes no real difference to the theory, but
can make a difference to the formulae. Similar notational conventions, and similar probable
errors in the notation, apply to the other examples below.

(ii) Top, ‘the’ category of spaces (of course, there are numerous variants but you can almost pick
whichever one you like as long as the constructions work):

Top(X,Y )n := Top(∆n ×X,Y ).

Composition and identities are defined more or less as in (i).
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If our favourite category, Top, of topological spaces has mapping spaces, Y X , so is itself
Cartesian closed, then Top(X,Y ) can be identified with Sing(Y X), and this is also true if

Y X exists in Top for some pair of spaces X and Y , even if not all such pairs may have this
property.

(iii) For each X, Y ∈ Cat, the category of small categories, then we similarly get Cat(X,Y ),

Cat(X,Y )n = Cat([n]×X,Y ).

We leave the other structure up to the reader.

Of course, Cat is Cartesian closed and Cat(X,Y ) = Ner(Y X), up to isomorphism.

(iv) Crs, the category of crossed complexes: see section 3.1, for the definitions and additional ref-
erences, [81] for some introductory background, and Tonks, [127] for a more detailed treatment
of the simplicially enriched category structure;

Crs(A,B) := Crs(π(n)⊗ C,D).

Composition has to be defined using an approximation to the identity, again see [127]. (As
mentioned before, the forthcoming book by Brown, Higgins and Sivera, [31] contains a coher-
ent exposition of most of the theory of crossed complexes.)

(v) Ch+
K or, more expansively, Ch+(K−Mod), the category of positive chain complexes of modules

over a (commutative) ring K. Details are left to the reader, or follow from the Dold-Kan
theorem and example (vi) below. We will examine this in more detail later on, but will also
look at a different enrichment for this category.

(vi) Simp.K-Mod, the category of simplicial K-modules. The structure uses tensor product with
the free simplicial K-module on ∆[n] to define the ‘hom’ and the composition, so is very
much like (i). It is better viewed as being enriched over itself and we will examine it from
that viewpoint slightly later.

(vii) Any simplicial monoid is a simplicially enriched category, so also any simplicial group is one.
Of course, they only have a single object. Conversely an S-category that has a single object
only is a simplicial monoid. The multiplication in the simplicial monoid is the composition in
the category etc.

(viii) Any category, C, will give us a S-category, namely the corresponding trivially enriched or
locally discrete S-category. This leads to:

Definition: A S-category, B, is locally discrete or, equivalently, trivially enriched if each
B(x, y) is a discrete simplicial set.

(ix) Any 2-category, C, will give us an S-category. In fact, a 2-category is precisely a Cat-enriched
category, so each ‘hom’ is a small category. In more detail, suppose C is a 2-category and x,
y and z are objects, then the composition

cx,y,z : C(x, y)× C(y, z)→ C(x, z)
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is a functor. The obvious way to get a simplicial set from C(x, y) is to apply the nerve functor.
We let C∆(x, y) = Ner(C(x, y)) and we use the fact that we have already noted, that the
nerve functor preserves products, then we define the S-category, C∆, by the above simplicial
‘homs’ with composition

C∆(x, y)× C∆(y, z) ∼= Ner(C(x, y)× C(y, z))
Ner(cx,y,z)−→ Ner(C(x, z)) ∼= C∆(x, z).

The identities look after themselves; associativity and unit axioms are then easily checked. In
fact, as the nerve functor embeds Cat as a subcategory of S, the resulting S-category is really
just the original 2-category in disguise.

(x) We saw in section ?? how to construct a simplicially enriched groupoid, GK, from a simplicial
set, K. The terminology is consistent. Recall that the set of objects of GK was the set of
vertices of K itself and that there were two maps, source and target, given by iterated face
maps to K0, (cf. page ??). To rewrite GK as a simplicially enriched category, we just take,
for objects, x and y of GK, GK(x, y)n to be the set of arrows in GKn that start at x and
have target y. The composition in GKn works by construction and all this is compatible
with face and degeneracy maps. (The details should be looked at a bit as it is very often
useful to be able to swap between the two ways of viewing GK. Thinking of the Dwyer-Kan
loop groupoid as a simplicially enriched category is akin to thinking of a group G as a small
category, so this is central to the ‘categorification’ story. )

(xi) An important set of examples of nice small S-categories is given by the simplicially enriched
category versions of the simplices. These are built from the ordered sets [n] = {0 < 1 < . . . <
n} and will be denoted S[n]. We will give two equivalent definitions of them, one simple one
here, another shortly using a comonadic resolution. The latter is very useful for linking the
construction with the cohomology of categories, but the first is very pretty and simple and is
easier to understand.

First note that if i and j are in [n], then there are no paths from i to j if i > j, but if i ≤ j,
there are 2j−i such paths. (Experiment a bit with simple examples if you do not see this.)
More precisely, a path in a category C from an object, x, to an object, y, is a sequence of
arrows in C joining the two objects:

x = c0
a1→ c1

a2→ . . .
ak→ ck = y.

It thus determines a functor a : [k] → C and, at this stage incidently, a simplex of Ner(C).
As [n] is a totally ordered set, each (non-degenerate) such path from i to j is specified just
by the set of intermediate objects, (as there are unique arrows between them so there is no
choice of the ams). It is now clear that there are j − i − 1 intermediate elements, between
i and j, and so 2j−i−1 such paths including the direct path that corresponds to the empty
set of intermediate objects. The combinatorial structure of the partially ordered set of such
paths is clearly that of {0 < 1}j−i−1, as each path corresponds to a subset of the intermediate
objects of [n]. The nerve of this partially ordered set is ∆[1]j−i. If i ≤ j ≤ k, we can define a
composition pairing

∆[1]j−i−1 ×∆[1]k−j−1 → ∆[1]k−i−1

given by sending a pair consisting of a subset A of {i, . . . , j} and a subset B of {j, . . . , k} to
A ∪ {j} ∪ B. Note the inclusion of {j}. It will always be there in that composite. (Here we
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are working in several contexts at once, paths, subsets of sets of intermediate elements, and
simplicial mappings, so it may pay to pause and check details such as compatibility with face
and degeneracy maps etc., just to make sure your intuition on what is happening here, and
why it works, is up to speed.)

Definition: Let S[n] be the S-category having the same objects as the category [n], with
S[n](i, j) empty if j < i and isomorphic to ∆[1]j−i−1 if not, and with the above composition
pairing as the composition. We will call S[n] the Scategorical@S-categorical n-simplex .

(xii) In general any category of simplicial objects in a ‘nice enough’ category has a simplicial
enrichment, although the general argument that gives the construction does not always make
the structure as transparent as it might be.

Proposition 35 If A is any category, Simp(A) = A∆op
is an S-category.

Proof: Let K to be any simplicial set, then ∆/K is the comma category with objects ([n], x)
with x ∈ Kn and morphisms µ : ([n], x) → ([m], y) being those µ : [n] → [m] in ∆ such that
K(µ)(y) = x. There is a forgetful functor

δK : ∆/K → ∆, δK([n], x) = x.

Now given X,Y ∈ Simp(A), define

Simp(A)(X,Y )n = NatTrans(Xδop∆[n], Y δ
op
∆[n])

�

Several times above we have use a notational convention that can be very useful. If a category,
A, is to be regarded both as an ordinary category and a simplicially enriched one, there arises a
problem of what notation to use for the two types of hom-object. One simple and quite effective
solution is to use A(A,B) if thinking of the set of morphisms and an underlined version A(A,B)
if it is the simplicial set of morphisms that we mean. Then it is also natural to refer to the basic
category as A and the S-enriched version as A. We probably have not been consistent about this,
but will try!

There is an evident notion of S-enriched functor, so we get a category of ‘small’ S-categories,
denoted S−Cat. Of course, some of the above examples are not ‘small’. (With regard to ‘smallness’,
although sometimes a smallness condition is essential, one can often ignore questions of smallness
and, for instance, consider simplicial ‘sets’ where actually the collections of simplices are not truly
‘sets’ (depending on your choice of methods for handling such foundational questions).)

5.2.3 From simplicial resolutions to S-categories

The construction of S[n] from [n] is an example of a general construction for any small category. One
can approach it via paths as we did above or via a free category construction. This latter approach
has the advantage that it emphasises the link between the constructions of the categorical approach
to homotopy coherence and the constructions of categorical cohomology theory, as exemplified by
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the comonadic resolution construction that we used earlier in a particular case, cf. section 3.5.3,
page 78. It is therefore useful to present both approaches.

The forgetful functor, U : Cat → DGrph0, has a left adjoint, F . Here DGrph0 denotes the
category of directed graphs with ‘identity loops’, so U forgets just the composition within each
small category, but remembers that certain loops are special ‘identity loops’. The free category
functor here takes, between any two objects, all strings of composable non-identity arrows that
start at the first object and end at the second. One can think of F identifying the old identity
arrow at an object x with the empty string at x.

This adjoint pair gives a comonad on Cat in the usual way, and hence a functorial simplicial
resolution, as we saw on page 78. Here we will use the alternative form of the construction.
This takes the face and degeneracy maps in the opposite direction, but is otherwise more or less
completely equivalent. We will denote this, for a small category A, by S(A) → A. In more
detail, we write L = FU for the functor part of the comonad, the unit of the adjunction, η :
IdDGrph0 → UF , gives the comultiplication, FηU : L→ L2, and the counit of the adjunction gives
ε : FU → IdCat, that is, ε : L→ Id. Now, for A a small category, set S(A)n = Ln+1(A) with face
maps di : Ln+1(A) → Ln(A) given by di = LiεLn−i, and similarly for the degeneracies, which use
the comultiplication in an analogous formula. (Note that there are two conventions possible here.
The other will use di = Ln−iεLi. The only effect of such a change is to reverse the direction of
certain ‘arrows’ in diagrams. The two simplicial structures are ‘dual’ to each other. The difference
is exactly that which we noted when we first wrote the homotopy coherent triangle in our first
example.)

This S(A) is a simplicial object in Cat, S(A) : ∆op → Cat, so does not immediately gives us
a simplicially enriched category, however its simplicial set of objects is constant because U and F
took note of the identity loops.

In more detail, let ob : Cat → Sets be the functor that picks out the set of objects of a small
category, then ob(S(A)) : ∆op → Sets is a constant functor with value the set ob(A) of objects of
A. More exactly, it is a discrete simplicial set, since all its face and degeneracy maps are bijections.
Using those bijections to identify the possible different sets of objects, yields a constant simplicial
set where all the face and degeneracy maps are identity maps, i.e., we do now have a constant
simplicial set of objects.

Lemma 27 Let B : ∆op → Cat be a simplicial object in Cat such that ob(B) is a constant simplicial
set with value B0, say. For each pair (x, y) ∈ B0, let

B(x, y)n = {σ ∈ Bn | dom(σ) = x, codom(σ) = y},

where, of course, dom refers to the domain function in Bn, similarly for codom.

(i) The collection {B(x, y)n| n ∈ N} has the structure of a simplicial set, B(x, y), with face and
degeneracies induced from those of B.

(ii) The composition in each level of B induces

B(x, y)× B(y, z)→ B(x, z).

Similarly the identity map in B(x, x) is defined as idx, the identity at x in the category B0.

(iii) The resulting structure is an S-enriched category, that will also be denoted B. �

The proof is just a matter of checking formulae, and is left to the reader.
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In particular, this shows that S(A) is a simplicially enriched category. The augmentation of
the comonadic resolution yields an S-functor, denoted d0 = η := ηA : S(A)→ A, from S(A) to the
locally discrete S-category corresponding to A. (The d0 notation is useful if considering the whole
structure as enriched over augmented simplicial sets, .)

Definition: For a small category A, the S-category S(A) is the free S-category resolving A
The S-functor η := ηA : S(A)→ A is the augmentation of this resolution.

The description of the simplices in each dimension of S(A) that start at a and end at b is
intuitively quite simple. The arrows in the category, L(A), correspond to strings of symbols repre-
senting non-identity arrows in A itself, those strings being ‘composable’ in as much as the domain
of the ith arrow must be the codomain of the (i− 1)th one, and so on. Because of this we have:

• S(A)0 consists exactly of such composable chains of maps in A, none of which is the identity;

• S(A)1 consists of such composable chains of maps in A, none of which is the identity, together
with a choice of bracketting;

• S(A)2 consists of such composable chains of maps in A, none of which is the identity, together
with a choice of two levels of bracketting;

• ... and so on.

Face and degeneracy maps remove or insert brackets, but care must be taken when removing
innermost brackets as the compositions that can then take place can result in chains with identities,
which then need removing, see [42], that is why the comonadic description is so much simpler, as
it manages all that itself.

To understand S(A) in general, it pays to examine the simplest few cases. The key cases are
when A = [n], the ordinal {0 < . . . < n} considered as a category as before. We gave these earlier
from the other viewpoint, so how do they look from the comonadic one? This sheds light on the
links between the two approaches.

The cases n = 0 and n = 1 give no surprises:

• S[0] has one object 0 and S[0](0, 0) is isomorphic to ∆[0], as the only simplices are degenerate
copies of the identity.

• S[1] likewise has a trivial simplicial structure, being just the category [1] considered as an
S-category.

• Things do get more interesting at n = 2. The key here is the identification of S[2](0, 2).
There are two non-degenerate strings or paths that lead from 0 to 2, so S[2](0, 2) will have
two vertices. The bracketted string ((01)(12)) on removing inner brackets gives (02) and
outer brackets, (01)(12), so represents a 1-simplex,

(02)
((01)(12)) // (01)(12),
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Other simplicial homs are all ∆[0] or empty. It thus is possible to visualise S[2] as a copy of
[2] with a 2-cell going towards the top:

1
(12)

��>>>>>>>

0
(02)

//

(01)
@@�������

� �� �KS

2

• The next case n = 3 is even more interesting: S[3](i, j) will be (i) empty if j < i, (ii)
isomorphic to ∆[0] if i = j or i = j − 1, (iii) isomorphic to ∆[1], by the same reasoning as we
just used, for j = i+ 2 and that leaves S[3](0, 3). This is a square, ∆[1]2, as follows:

(03)
((02)(23)) //

diag

&&MMMMMMMMMMMMMMMMMMMMM

((01)(13)) a

��

(02)(23)

((01)(12))((23))b

��
(01)(13)

((01))((12)(23))
// (01)(12)(23)

where the diagonal diag = ((01)(12)(23)), a = (((01))((12)(23))) and b = (((01)(12))((23))).
(It is instructive to check that this is correct, firstly because I may have slipped up (!) as well
as seeing the mechanism in action. Removing the outermost brackets is d0, and so on.)

• The case of S[4] is worth doing. (Yes, that means it is suggested as an exercise. As might
be expected, S[4](0, 4) is a cube.)

The simplicial resolution construction of S(A) from A was cross referenced to our earlier use of
comonadic simplicial resolutions for groups and the link of that with cohomology, see page 78. So
as to investigate the link between the two instances of this that we have seen, it is useful to look
at a special case of the S-construction, namely when the given small category is a monoid and, in
particular, when it is a group.

Let A be a monoid, thought of as a small category with a single object. The adjoint pair of
functors,

U : Cat
// DGrph0 : Foo ,

restricts to the category of monoids on the one hand and to that, Sets0, of pointed sets on the
other:

U : Mon
// Sets0 : Foo .

The basic step in the construction is that of forming the free monoid on the set of the non-identity
elements of a monoid, and so the bracketing terminology works well still in this particular situation.

We thus have that S(A) is a simplicial monoid in the ordinary sense of the term. If A is actually
a group rather than ‘merely’ a monoid, then S(A) is still only a simplicial monoid, but for any
g ∈ A, there are ‘generators’ 〈g〉 and 〈g−1〉 in S(A)0 and a 1-simplex, (〈g〉, 〈g−1〉) in S(A)1. We can
calculate the vertices on the two ends of this: as d0 = εT and d1 = Tε,

d0(〈g〉, 〈g−1〉) = 〈g〉〈g−1〉,



5.2. SIMPLICIALLY ENRICHED CATEGORIES 151

and
d0(〈g〉, 〈g−1〉) = 1,

since ε(〈g〉, 〈g−1〉) = 1A). The 1-simplex thus looks like

1→ 〈g〉〈g−1〉.

Of course, there is another one from 1 to 〈g〉〈g−1〉. As S(A)0 is a free monoid, we do not have
elements such as 〈g〉−1 around and so do not get a corresponding 1-simplex ending at 1.

Remark: The history of this S-construction is interesting. A variant of it, but with topolog-
ically enriched categories as the end result, is in the work of Boardman and Vogt, [20], and also
in Vogt’s paper, [132]. Segal’s student Leitch used a similar construction to describe a homotopy
commutative cube (actually a homotopy coherent cube), cf. [88], and this was used by Segal in his
famous paper, [116], under the name of the ‘explosion’ of A. All this was still in the topological
framework and the link with the comonad resolution was still not in evidence.

Although it seems likely that Kan knew of this link between homotopy coherence and the
comonadic resolutions by at least 1980, (cf. [58]), the construction does not seem to appear in his
work with Dwyer as being linked with coherence until much later. Cordier made the link explicit
in [42] and showed how Leitch and Segal’s work fitted in to the pattern. His motivation was for the
description of homotopy coherent diagrams of topological spaces. Other variants were also apparent
in the early work of May on operads, and linked in with Stasheff’s work on higher associativity and
commutativity ‘up to homotopy’, and it would be possible to write a whole course on those and
not to stray too far from our theme of non-abelian cohomology either.

Cordier and Porter, [43], used an analysis of a locally Kan simplicially enriched category in-
volving this construction to prove a generalisation of Vogt’s theorem on categories of homotopy
coherent diagrams of a given type. (We will return to this aspect a bit later in these notes, but
an elementary introduction to this theory can be found in [81].) Finally Bill Dwyer, Dan Kan
and Jeffrey Smith, [60], introduced a similar construction for an A which is an S-category to start
with, and motivated it by saying that S-functors with domain this S-category corresponded to
∞-homotopy commutative A-diagrams, yet they do not seem to be aware of the history of the con-
struction, and do not really justify the claim that it does what they say. Their viewpoint is however
very important as, basically, within the setting of Quillen model category structures, this provides
a cofibrant replacement construction. We will look at cofibrant replacements in another context
later on in this chapter. (If you want to check up on this idea now, a good source is Hovey’s book,
[76].) Of course, any other cofibrant replacement could be substituted for it and so would still allow
for a description of homotopy coherent diagrams in that context. This important viewpoint can
also be traced to Grothendieck’s Pursuing Stacks, [67].

The extension of the construction in [60], although simple to do, is often useful and so will be
outlined next.

If A is already a S-category, think of it as a simplicial category, then applying the S-construction
to each An will give a bisimplicial category, i.e., a functor S(A) : ∆op ×∆op → Cat. Of this we
take the diagonal, so the collection of n-simplices is S(A)n,n, and, by noticing that the result has
a constant simplicial set of objects, then apply the lemma.

Before leaving this construction, let us just comment that if we had used the other formulae for
the simplicial resolution, the only difference would be that the higher dimensional arrows would be
reversed in direction, so that, for instance, in S[2], we would have had the arrow going from the
composite of the d2 and the d0 to the d1-face, not the other way around.
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5.3 Structure

As one can ‘do’ homotopy theory with simplicial sets, one can adapt that theory to give a basic
homotopy theory in any S-category. Of course, some of these homotopy theories will be richer than
others.

5.3.1 The ‘homotopy’ category

If C is an S-category, we can form a category π0C with the same objects and having

(π0C)(X,Y ) = π0(C(X,Y )).

This is known as the homotopy category of the S-category. For instance, if C = CW, the category of
CW-complexes, then π0CW = Ho(CW ), the corresponding homotopy category. Similarly we could
obtain a groupoid enriched category using the fundamental groupoid (cf. Gabriel and Zisman,
[64]), that is, by applying the fundamental groupoid functor, Π1, to each ‘hom’

(Π1C)(X,Y ) = Π1(C(X,Y )).

This works because Π1 preserves products. (We will see many similar results later, in which the
type of enriched structure is transformed using a ‘monoidal functor’, i.e., one that is compatible
with the monoidal category structures being used. All will be revealed later, in Chapter ??.)

Remarks: This notion of a groupoid enriched category has been called a track category by
Baues; see [15], for instance. The terminology is not quite precise enough for our uses as we
may have track n-categories to handle later on, so we will call this 2-dimensional version a track
2-category. Formally we have:

Definition: A 2-category, C, is a track 2-category or a groupoid enriched category if each
C(x, y) is a groupoid.

These track 2-categories / groupoid enriched categories have a reasonably rich ‘abstract’ homo-
topy theory, as is shown by the book by Gabriel and Zisman, [64], or the article by Fantham and
Moore, [62]. More recently they have been used extensively by Baues, [15].

One can ‘do’ some elementary homotopy theory in any S-category, C, by saying that two maps
f0, f1 : X → Y in C are homotopic if there is an H ∈ C(X,Y )1 with d0H = f1, d1H = f0.

This theory will not be very rich, however, unless at least some low dimensional Kan conditions
are satisfied.

Definition: The S-category, C, is called locally Kan if each C(X,Y ) is a Kan complex; locally
weakly Kan if . . . , etc.

(If you have not met ‘weak Kan complexes’, you will soon meet them in earnest! We will define
them properly before using them, so don’t worry.)

The theory is ‘geometrically’ nicer to work with if C is tensored or cotensored.
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5.3.2 Tensoring and Cotensoring

We have already met the idea of tensoring and cotensoring briefly when discussing simplicial ho-
motopies, (page ?? in section ??). The notions of tensors and cotensors make sense in any enriched
category setting, but here we will just handle the case of simplicially enriched category.

Definition: If for all K ∈ S, X,Y,∈ C, there is an object K⊗̄X in C such that

C(K⊗̄X,Y ) ∼= S(K, C(X,Y )

naturally in K, X and Y , then C is said to be tensored over S.

Definition: Dually, if we require objects C̄(K,Y ) such that

C(X, C̄(K,Y )) ∼= S(K, C(X,Y )

then we say C is cotensored over S.

Remark on terminology: In many ways this terminology is not a good one. Usually ‘tensors’
are given by colimit type constructions, whilst cotensors are limit-type constructions. A cotensor
is interpreted as if it was a function or mapping ‘space’, and in the simple case of a Set-enriched
setting, (i.e., standard category theory) is a power operation. If X,Y are objects in a category C
and K is just a set, C̄(K,Y ) is Y K , the K-fold power of Y , that is, the product of K-many copies
of the object, Y . Dually K⊗̄X will be the K-fold copower of X, that is, the coproduct of K-many
copies of the object X. Because of this, an alternative terminology to the above has been suggested:

‘standard’ alternative

tensored copowered
cotensored powered

(see the discussion of this in the nLab, [105].) (This terminology is probably still unstable but
should stabilise soon.)

The example that we have seen most of this type of structure is in S, where, for K in S,
and, this time, also X in S, K⊗̄X is just K × X and, dually, for Y in S, C̄(K,Y ) is S(K,Y ),
the simplicial function space of maps from K to Y . To gain some intuitive feeling for these two
concepts in general, we can think of K⊗̄X as being ‘K product with X’, and C̄(K,Y ) as the object
of functions from K to Y . These words do not, as such, make sense in all generality, but do tell
one the sort of tasks these constructions will be set to do. They will not be much used explicitly
here, however, their application to constructing homotopy limits and colimits will be looked at in
detail later on.

The following also gives an indication of other uses. Some of the terminology has not been
explicitly explained, but the results do give an idea of the structure available.

Proposition 36 (cf. Kamps and Porter, [81]) If C is a locally Kan S-category tensored over S,
then, taking I×X := ∆[1]⊗̄X, we get a good cylinder functor such that for the cofibrations relative
to I and weak equivalences taken to be homotopy equivalences, the category C has a cofibration
category structure. �
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A cofibration category structure is just one of many variants of the abstract homotopy theory
structure introduced to be able to push through homotopy type arguments in particular settings.
There are variants of this result, due to Kamps, see references in [81], where C is both tensored
and cotensored over S and the conclusion is that C has a Quillen model category structure. The
examples of locally Kan S-categories include Top, and Kan, that is the full subcategory of S given
by the Kan complexes, also Grpd and Crs, but not Cat or S itself.

5.4 Nerves and Homotopy Coherent Nerves

Before we get going on this section, it will be a good idea to bring to the fore, as promised, the
definitions of weak Kan complex (or quasi-category). We first recall and repeat from the first
chapter, the notions of Kan fibration and Kan complex, as these are central to what follows and it
is convenient not to have to be flipping back and fore to the earlier discussion.

5.4.1 Kan and weak Kan complexes

As usual, we set ∆[n] = ∆(−, [n]) ∈ S, then for each i, 0 ≤ i ≤ n, we can form a subsimplicial set,
Λi[n], of ∆[n] by discarding the top dimensional n-simplex (given by the identity map on [n]) and
its ith face. We must also discard all the degeneracies of these simplices. This informal definition
does not give a ‘picture’ of what we have, so we will list the various cases for n = 2.

Λ0[2] = 1
←0th face missing

0

@@�������
// 2

Λ1[2] = 1

��>>>>>>>

0

@@�������
2

Λ2[2] = 1

��>>>>>>>

0 // 2

A map p : E → B is a Kan fibration if given any n, i, as above, and any (n, i)-horn in E, i.e., any
map f1 : Λi[n]→ E, and n-simplex, f0 : ∆[n]→ B, such that

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
// B

commutes, then there is an f : ∆[n] → E such that pf = f0 and f.inc = f1, i.e., f lifts f0 and
extends f1.

A simplicial set, K, is a Kan complex if the unique map K → ∆[0] is a Kan fibration. This
is equivalent to saying that every horn in K has a filler, i.e., any f1 : Λi[n] → K extends to an
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f : ∆[n]→ K. This condition looks to be purely of a geometric nature but in fact has an important
algebraic flavour; for instance, if f1 : Λ1[2]→ K is a horn, it consists of a diagram

b

��???????
a
??�������

of ‘composable’ arrows in K. If f is a filler, it looks like

b

��???????

c
//

a

f

??�������

and one can think of the third face c as a composite of a and b. This ‘composite’ c is not usually
uniquely defined by a and b, but is determined ‘up to homotopy’. If we write c = ab as a shorthand
then if g1 : Λ0[2]→ K is a horn, we think of g1 as being

d
??�������
e

//

and to find a filler is to find a diagram

x

?
?

?
?

d
??�������
e

//

and thus to ‘solve’ the equation dx = e for x in terms of d and e. It thus requires, in general,
some approximate inverse for d, in fact, taking e to be a degenerate 1-simplex puts one in exactly
such a position. Thus Kan complexes have a very weak ‘algebraic’ structure. There is a sort of
composition, up to homotopy, which is sort of associative, up to homotopy, and has sort of inverses,
yes, you guessed, up to homotopy.

In many useful cases, we do not always have inverses and so want to discard any requirement
that would imply they always exist. This leads to the weaker form of the Kan condition in which
in each dimension no requirement is made for the existence of fillers on horns that miss out the
zeroth or last faces. More exactly:

Definition: A simplicial set K is a weak Kan complex or quasi-category if for any n and
0 < k < n, any (n, k)-horn in K has a filler.

Remark: Joyal, [80], uses the term inner horn for any (n, k)-horn in K with 0 < k < n. The
two remaining cases are then conveniently called outer horns.

5.4.2 Categorical nerves

As we saw in section 1.3.1, the categorical analogue of the singular complex is the nerve: if C is
a category, its nerve, Ner(C), is the simplicial set with Ner(C)n = Cat([n],C), where [n] is the
category associated to the finite ordinal [n] = {0 < 1 < . . . < n}. The face and degeneracy maps
are the obvious ones using the composition and identities in C.

The following is well known and easy to prove (i.e., left to you).
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Lemma 28 (i) Ner(C) is always weakly Kan.
(ii) Ner(C) is Kan if and only if C is a groupoid. �

Of course more is true. Not only does any inner horn in Ner(C) have a filler, it has exactly one
filler. To express this with maximum force, the following idea, often attributed to Graeme Segal or
to Grothendieck, is very useful.

Let p > 0, and consider the increasing maps, ei : [1]→ [p], given by ei(0) = i and ei(1) = i+ 1.
For any simplicial set, A, considered as a functor A : ∆op → Sets, we can evaluate A on these ei
and, noting that ei(1) = ei+1(0), we get a family of functions Ap → A1, which yield a cone diagram,
for instance, for p = 3:

A3

A(e1)

**UUUUUUUUUUUUUUUUUUUUUUUU

A(e2)

  BBBBBBBBBBBBBBBBBBB

A(e3)

��+
+++++++++++++++++++++

A1

d0
��

A1
d1 //

d0
��

A0

A1 d1
// A0

and in general, thus yield a map

δ[p] : Ap → A1 ×A0 A1 ×A0 . . .×A0 A1.

The maps, δ[p], have been called the Segal maps.

Lemma 29 If A = Ner(C) for some small category C, then for A, the Segal maps are bijections.

Proof: A simplex σ ∈ Ner(C)p corresponds uniquely to a composable p-chain of arrows in C, and
hence exactly to its image under the relevant Segal map. �

Better than this is true:

Proposition 37 If A is a simplicial set such that the Segal maps are bijections, then there is a
category structure on the directed graph,

A1
// // A0oo ,

making it a category whose nerve is isomorphic to the given A.

Proof: To get composition you use

A1 ×A0 A1
∼=→ A2

d1→ A1.

Associativity is given by A3. The other laws are easy, and illuminating, to check. �

The condition ‘Segal maps are a bijection’ is closely related to notions of ‘thinness’ as used
by Brown and Higgins in the study of crossed complexes and their relationship to ω-groupoids,
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(see, for instance, [31], and here in our discussion of T -complexes, starting on page 30), and it also
relates to Duskin’s ‘hypergroupoid’ condition, [56].

Another result that is sometimes useful is a refinement of the ‘groupoids give Kan complexes’
lemma, Lemma 1 on page 29. The proof is ‘the same’ and is equally left to the reader.

Lemma 30 Let A = Ner(C), the nerve of a category C.

(i) Any (n, 0)-horn

f : Λ0[n]→ A

for which f(01) is an isomorphism has a filler. Similarly any (n, n)-horn g : Λn[n]→ A for which
g(n− 1 n) is an isomorphism, has a filler.

(ii) Suppose f is a morphism in C with the property that, for any n, any (n, 0)-horn ϕ :
Λ0[n] → A having f in the (0, 1) position, has a filler, then f is an isomorphism. (Similarly with
(n, 0) replaced by (n, n) with the obvious changes.) �

Again the proof is not hard and reveals some neat arguments, so ... .

Remark: Joyal in [80] suggested that the name ‘weak Kan complex’, as introduced by Board-
man and Vogt, [20], could be changed to that of ‘quasi-category’ to stress the analogy with categories
per se as ‘Most concepts and results of category theory can be extended to quasi-categories’, [80].

It would have been nice to have explored Joyal’s work on quasi-categories more fully, e.g. [80],
but that would take us too far from our central themes. The following few sections just skate the
surface of that theory.

5.4.3 Quasi-categories

Categories yield quasi-categories via the nerve construction as we have seen. Quasi-categories yield
categories by a ‘fundamental category’ construction that is left adjoint to nerve. This can be
constructed using the free category generated by the 1-skeleton of A, and then factoring out by a
congruence generated by the basic relations : gf ≡ h, one for each commuting 1-sphere (g, h, f)
in A. By a 1-sphere is meant a map a : ∂∆[2] → A, thus giving three faces, (a0, a1, a2), linked in
the obvious way. The 1-sphere is said to be commuting if there is a 2-simplex, b ∈ A2, such that
ai = dib for i = 0, 1, 2.

Definition: The fundamental category of a quasi-category, A, is the category with presentation:

• generators = the 1-skeleton of A,
and

• relations gf ≡ h as above.

This ‘fundamental category’ functor also has a very neat description due to Boardman and
Vogt. (The treatment here is, again, adapted from [80].)

We assume given a quasi-category, A. Write gf ∼ h if (g, h, f) is a commuting 1-sphere. Let
x, y ∈ A0 and let A1(x, y) = {f ∈ A1 | x = d1f, y = d0f}. If f, g ∈ A1(x, y), then, suggestively
writing s0x = 1x,

Lemma 31 The four relations f1x ∼ g, g1x ∼ f , 1yf ∼ g and 1yg ∼ f are equivalent. �
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The proof is easy and is left as an exercise.

We will say f ' g if any of these is satisfied and call ', the homotopy relation. It is an
equivalence relation on A1(x, y). Set hoA1(x, y) = A1(x, y)/ '.

If f ∈ A1(x, y), g ∈ A1(y, z) and h ∈ A1(x, z), then the relation gf ∼ h induces a map:

hoA1(x, y)× hoA1(y, z)→ hoA1(x, z).

Proposition 38 The maps

hoA1(x, y)× hoA1(y, z)→ hoA1(x, z)

give a composition law for a category, hoA, the homotopy category of A. �

Definition: This category, hoA, is called the homotopy category of A.

Of course, hoA is the fundamental category of A up to natural isomorphism. From previous
comments we have:

Corollary 9 A quasi-category A is a Kan complex if and only if hoA is a groupoid. �

5.4.4 Homotopy coherent diagrams and homotopy coherent nerves

(The notion was explicitly introduced by Cordier, [42], adapting ideas from Boardman and Vogt,
[20]. There is an overview of this theory in [109] and a thorough introduction in [81]. The con-
struction of the homotopy coherent nerve is also used, extensively, by Lurie in [91], and by Hinich,
[74].)

Before handling this topic, we quickly recall some of the intuition behind homotopy coherent
(h. c.) diagrams, as we saw a few pages back.

A diagram indexed by the small category, [2],

X(1)
X(12)

##GGGGGGGG

X(0)
X(02)

//

X(01)
;;wwwwwwww

X(2)

is h. c. if there is specified a homotopy

X(012) : I ×X(0)→ X(2),

X(012) : X(02) ' X(12)X(01).
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For a diagram indexed by [3]: Draw a 3-simplex, marking the vertices X(0), . . . , X(3), the
edges X(ij), etc., the faces X(ijk), etc. The homotopies X(ijk) fit together to make the sides of
a square

X(13)X(01)
X(123)X(01)// X(23)X(12)X(01)

X(03)

X(013)

OO

X(023)
// X(23)X(02)

X(23)X(012)

OO

and the diagram is made h. c. by specifying a second level homotopy

X(0123) : I2 ×X(0)→ X(3)

filling this square.

These can be continued for larger [n], as we have hinted.

We have seen that the ‘same’ diagrams occur when we draw what seems to be a reasonable
example of the intuitive form of homotopy coherent diagram in Top and in the S-categories, S(A).
This suggests the definition of a homotopy coherent diagram in an arbitrary S-category. This form
is due to Cordier, [42], extending the earlier work of Boardman and Vogt.

Definition: Let A be a small category and B, an S-category.

(i) A homotopy coherent diagram of type A in B is a S-functor F : S(A)→ B.

(ii) If F0, F1 : S(A) → B are two such diagrams, a homotopy coherent map between them is a
diagram of type A× [1] agreeing with F0 on A× {0} and with F1 on A× {1}.

Of course, we refer to A as the template of the h.c. diagram, F .

We should pause to examine this notion of homotopy coherent map in more detail, via our low
dimensional examples, i.e., with A = [n] for small values of n.

For n = 0, this is unenlightening: F0, F1 : S[0] → B, so they are really just two objects of B,
and a h.c. map between them in then just a map between F0(0) and F1(0) in B.

For n = 1, it is already a much richer picture. This time, F0 and F1 pick out two maps in B,

namely Fi(0)
Fi(01)→ Fi(1) for i = 0, 1. A homotopy coherent map η : F0 → F1 is a h.c. diagram of

type [1]× [1], so is a square of form

F1(0) // F1(1)

F0(0)

OO 7777W_ ;;wwwwwwwww
7777 ��
// F0(1)

OO

and will specify η(i) : F0(i) → F1(i) for i = 0, 1, but also a diagonal map, which we will write
η1

0 : F0(0) → F1(1), then also we will have homotopies as shown from η1
0 to F1(01)η(0) and to

η(1)F0(01), respectively.
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It is worthwhile pausing to note that, in this simplicial approach, there is an avoidance of
questions of directions of 2-cells (and higher order ones). Often when looking at diagrams showing
lax or pseudo morphisms between lax or pseudo functors, one or other of the directions is chosen,
e.g., here it might typically be η : η(1)F0(01) ⇒ F1(01)η(0). If we are in a ‘pseudo’ context, this
choice, although arbitrary, is somewhat immaterial as η will be invertible, but this need not be
the case for a lax morphism. Nothing dictates which direction is ‘better’ and both are present
in this simplicial approach. If someone gives you η : η(1)F0(01) ⇒ F1(01)η(0), you can take
η1

0 = η(1)F0(01) and set the bottom right homotopy to be the identity. Likewise if η is presented
in the reverse direction, just set the top left cell to be the identity two cell and use the given η in
the bottom right. Some people do not like this as they prefer one choice or other, usually for a
good reason from the situation being handled, yet, simplicially, it is more or less required to have
the diagonal and the two 2-cells.

For n = 2, we have a prism, [2] × [1], and you have to specify η on three tetrahedra in this,
agreeing on the overlaps. Here is a possible notation and the beginnings of a detailed discussion
which can be extended to higher dimensions. (The rest is not hard, but does really involve
reader participation!)

(1, 0)

��2
222222222

))TTTTTTTTTTTTTTTTTTTTTTTTTTTT
// (1, 1)

��2
222222222

(0, 0)

<<yyyy

((RRRRRRRRR
// (0, 1)

<<yyyy

((RRRRRRRRR

(2, 0) // (2, 1)

We suggest a matrix notation. For this the use of column ‘vectors’ is preferable to rows, so (1,0)

becomes
(

1
0

)
as a vertex label; the edge from

(
1
0

)
to
(

1
1

)
is then clearly

(
1 1
0 1

)
; the shown

diagonal is
(

1 2
0 1

)
. (Two diagonals have been left out of the diagram.)

We mentioned three tetrahedra. These are

σ0 =
(

0 1 2 2
0 0 0 1

)
, σ1 =

(
0 1 1 2
0 0 1 1

)
, σ2 =

(
0 0 1 2
0 1 1 1

)
.

The first and second share a d2-face, namely
(

0 1 2
0 0 1

)
, whilst the second and third share a

d1-face, i.e.,
(

0 1 2
0 1 1

)
.

The comments above about ‘orientation’ or ‘direction’ are even more pertinent here. For each
tetrahedron, we have a copy of S[3], so in particular S[3](0, 3) is there 3 times. As S[3](0, 3) is a
square, ∆[1]2, we have 6 two simplices in S([2]× [1])((0, 0), (2, 1)). They fit together to give half a
hexagon:

//

���������
oo

��???????

??�������oo

ggOOOOOOOOOOOOO

WW/////////////

OO GG�������������

77ooooooooooooo //

__???????

Each subdivided segment is a square in disguise! (You get half a hexagon because the prism is
half of the cube [1]3, and S([1]3) is a barycentrically subdivided hexagon.) Of the six 2-simplices,
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if you check their orientation half go anticlockwise, half go clockwise. Later in our discussion of
2-dimensional descent data, we will have a prismical diagram. In each rectangular side face, we
choose the convention as above, putting the ‘active’ face in one of the two 2-simplices. This means
three of the boundary arrows in the above will be set to be equalities. The diagram we will use
there is a commuting pentagon of 2-cells in a 2-category, and, of course, this can be derived from
the above by noting that in 2-categories, there are no 3-cells, so S([2] × [1])((0, 0), (2, 1)) will be
mapped to a category, something like B(F0(0), F1(2)), but that has no non-identity 2-cells, so the
2-simplices will be sent to identity homotopies. The other input is that 5 = 8− 3 (proof left to the
reader - no calculators permitted - other than your fingers!!!) We will refer back to this when we
are looking at 2-dimensional descent. It permits us to see the phenomena there as being very much
akin to those with homotopy coherence.

This type of combinatorial analysis can be very useful when handling maps of homotopy coherent
diagrams and relating them to other descriptions (lax, pseudo , etc.) of the same situations. It
is not the only way of handling these ideas however, and the simplicial set of maps between two
S-functors, F,G : S(A)→ B, can be handled categorically as well. The basic intuition is, however,
very much the same, and the resulting problems are there, whichever way you approach this. Use of
more high powered categorical machinery, quasi-categories, etc. can make the theory much easier to
apply, but also then you need to keep in sight the basic intuitions and to see how the combinatorics
related to that is encoded in the machine you are using.

We mentioned ‘problems’ ... what are they?

In general, homotopy coherent maps, as defined here, need not compose, even when they might
be expected to. The problem is analogous to that of composing homotopies between simplicial
maps, that we met a short while ago. Unless the codomains are Kan complexes, there is no
guarantee that such homotopies can be composed. Even when they compose, of course, there will,
in general, be many composites. Those composites will be themselves homotopic and so on. Here
with homotopy coherent maps, provided that the ambient category, B, is locally weakly Kan, (i.e.,
is ‘quasi-category’-enriched), then they do compose, up to homotopy. The result is a sort of ‘A∞-
category’ structure, (see Batanin’s paper, [13]), but also has a quasi-categorical description, which
we will meet shortly. One can also use Verity’s theory of complicial sets, [128] and their weakened
form, [129–131]. These are closely related to the simplicial T -complexes we saw in section 1.3.6.

The theory of homotopy coherence was initially developed explicitly by Vogt, [132], following
methods introduced with Boardman, [20], (see also the references in that source for other earlier
papers on the area), then Cordier, [42], provided the simple S-category theory way of working with
h. c. diagrams and hence released an ‘arsenal’ of categorical tools for working with h. c. diagrams.
Some of that is worked out in the papers, [44–47]. We illustrate this with some results taken from
those sources.

(i) If X : A → Top is a commutative diagram and we replace some of the X(a) by homotopy
equivalent Y (a) with specified homotopy equivalence data:

f(a) : X(a)→ Y (a), g(a) : Y (a)→ X(a)

H(a) : g(a)f(a) ' Id, K(a) : f(a)g(a) ' Id,

then we can combine these data into the construction of a h. c. diagram Y based on the objects
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Y (a) and homotopy coherent maps

f : X → Y, g : Y → X, etc.,

making X and Y homotopy equivalent as h. c. diagrams. In other words, our earlier simple
examples can be handled for any indexing category. (This is ‘really’ a result about quasi-categories,
see [80].)

(ii) Vogt, [132]. If A is a small category, there is a category Coh(A, T op) of h. c. diagrams and
homotopy classes of h. c. maps between them. Moreover there is an equivalence of categories

Coh(A, T op) '→ Ho(TopA)

where Ho(TopA) is obtained from the category of functors from A to Top bu inverting objectwise
homotopy equivalences.

This was extended replacing Top by a general locally Kan simplicially enriched complete cate-
gory, B, in [43].

(iii) Cordier (1980), [42]. Given A, a small category, then the S-category S(A) is such that a
h. c. diagram of type A in Top is given precisely by an S-functor

F : S(A)→ Top

This suggested the extension of h. c. diagrams to other contexts such as a general locally Kan
S-category, B, and suggests the definition of homotopy coherent diagram in a S-category and thus
a h. c. nerve of an S-category.

Definition: (Cordier (1980), [42]) Given a simplicially enriched category B, the homotopy
coherent nerve of B, denoted Nerh.c.(B), is the simplicial ‘set’ with

Nerh.c.(B)n = S−Cat(S[n],B),

and with the induced face and degeneracy maps.

Remark on terminology: Cordier, [42], initially used the term ‘homotopy coherent nerve’
for the above as he was primarily interested in its use in that area although in his subsequent work
with Porter, [44–47], the quasi-categorical and ∞-categorical aspects were often a priority. Lurie,
[91], has called this the simplicial nerve functor as his applications are not explicitly concerned
with homotopy coherence.

To understand simple h. c. diagrams and thus Nerh.c.(B), we will unpack the definition of
homotopy coherence.

The first thing to note is that, as we saw, for any n and 0 ≤ i < j ≤ n, S[n](i, j) ∼= ∆[1]j−i−1,
the (j− i− 1)-cube given by the product of j− i− 1 copies of ∆[1]. Thus we can reduce the higher
homotopy data to being just that, maps from higher dimensional cubes.

Next some notation:
Given simplicial maps

f1 : K1 → B(x, y),
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f2 : K2 → B(y, z),

we will denote the composite

K1 ×K2 → B(x, y)× B(y, z)
c→ B(x, z)

just by f2.f1 or f2f1. (We already have seen this in the h. c. diagram above for A = [3].
X(123)X(01) is actually X(123)(I ×X(01)), whilst X(23)X(012) is exactly what it states.)

Suppose now that we have the h. c. diagram, F : S(A)→ B. This is an S-functor and so:

• to each object a of A, it assigns an object F (a) of B;

• to each string of composable maps in A,

σ = (f0, . . . , fn)

starting at a and ending at b, it assigns a simplicial map

F (σ) : S(A)(0, n+ 1)→ B(F (a), F (b)),

that is, a higher homotopy

F (σ) : ∆[1]n → B(F (a), F (b)),

such that

• if f0 = id, F (σ) = F (∂0σ)(proj ×∆[1]n−1);

• if fi = id, 0 < i < n,

F (σ) = F (∂iσ).(Ii ×m× In−i),

where m : I2 → I is the multiplicative structure on I = ∆[1] induced by the ‘max’ function
on {0, 1};

• if fn = id, F (σ) = F (∂nσ);

• i F (σ)|(Ii−1 × {0} × In−i) = F (∂iσ), 1 ≤ i ≤ n− 1;

• i F (σ)|(Ii−1 × {1} × In−i) = F (σ′i).F (σi), where σi = (f0, . . . , fi−1) and σ′ = (fi, . . . , fn).

We have used ∂i here for the face operators in the nerve of A.

The specification of such a homotopy coherent diagram can be split into two parts:

(a) specification of certain homotopy coherent simplices, i.e., elements in Nerh.c.(B);
and

(b) specification, via a simplicial mapping from Ner(A) to Nerh.c.(B), of how these individual
parts (from (a)) of the diagram are glued together.
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The second part of this is easy as it amounts to a simplicial map Ner(A)→ Nerh.c.(B), and so
we are left with the first part. The following theorem was proved by Cordier and Porter, [43], but
many of the ideas for the proof were already in Boardman and Vogt’s lecture notes, like so much
else!

Theorem 10 ([43]) If B is a locally Kan S-category, then Nerh.c.(B) is a quasi-category. �

It is not clear what happens if B is only locally weakly Kan, is Nerh.c.(B) then a quasi-category?
It is probably a known result, maybe even clear, but may not be in published form.

The proof of the theorem is in the paper, [43], and is not too complex. The essential feature
is that the very definition (unpacked version) of homotopy coherent diagram makes it clear that
parts of the data have to be composed together, (recall the composition of simplicial maps

f1 : K1 → B(x, y),

f2 : K2 → B(y, z),

above and how important that was in the unpacked definition).

We thus have that a homotopy coherent diagram ‘is’ a simplicial map, F : Ner(A)→ Nerh.c.(B),
and that Nerh.c.(B) is a quasi-category. Of course, the usual proof that, if X and Y are simplicial
sets, and Y is Kan, then S(X,Y ) is Kan as well, extends to having Y a quasi-category and the
result being a quasi-category. Earlier we referred to Coh(A,B) in connection with Vogt’s theorem.
The neat way of introducing this is as hoS(Ner(A), Nerh.c.(B)), the fundamental category of the
function quasi-category. In fact, this is essentially the way that Vogt first described it.

If A and B are both S-categories, and F : A → B is an S-functor, then clearly F induces a
simplicial map

Nerh.c.(F ) : Nerh.c.(A)→ Nerh.c.(B).

In other words Nerh.c. is a functor from S−Cat to S, ignoring any problems due to ‘size’ of the
categories involved. We will see later (Proposition 42 and the discussion around that result) that
there may be simplicial maps between Nerh.c.(A) and Nerh.c.(B) that do not come from S-functors.

As the category, S−Cat, of (small) S-categories and S-functors between them is cocomplete,
there is a left adjoint to this nerve functor in the usual way. The general picture of such adjoint
pairs induced by some ‘models’ here looks like this: we have S : ∆ → S−Cat and ∆ : ∆ → S,
the Yoneda embedding, and these induce the nerve and ‘realisation’ adjoint pair. (If you replace
S−Cat by Top you get the singular complex / geometric realisation adjoint pair, that you have
met earlier.) As the nerve functor has a left adjoint, it preserves limits and, in particular, products.

5.4.5 Simplicial coherence and models for homotopy types

Before we look at more direct applications of simplicially based homotopy coherence, there is a point
that is worth noting for the links with algebraic and categorical models for homotopy types. The
S-categories, S[n], contain a lot of the information needed for the construction of such models. A
good example of this is the interchange law and its links with Gray categories and Gray groupoids.
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Consider S[4]. The important information is in the simplicial set S[4](0, 4). This is a 3-cube,
so is still reasonably easy to visualise. Here it is. The notation is not intended to be completely
consistent with earlier uses, but is meant to be more or less self explanatory.

(01)(13)(34) // (01)(12)(23)(34)

(01)(14) //

77ppppppppppp
(01)(12)(24)

55kkkkkkkkkkkkkk

(03)(34) //

OO

(02)(23)(34)

OO

(04) //

77pppppppppppp

OO

(02)(24)

55kkkkkkkkkkkkkk

OO

This looks mysterious! A 4-simplex has 5 vertices, and hence 5 tetrahedral faces. Each of the 5
tetrahedral faces will contribute a square to the above diagram, yet a cube has 6 square faces!
Where does the ‘extra’ face come from? (Things get ‘worse’ in S[5](0, 5), which is a 4-cube, so has
8 cubes as its faces, but ∆[5] has only 6 faces.) Back to the ‘extra’ face, this is

(01)(12)(24)
(01)(12)(234)// (01)(12)(23)(34)

(02)(24)
(02)(234)

//

(012)(24)

OO

(012)(234)

(02)(23)(34).

(012)(23)(34)

OO

The arrow (012) : (02) → (01)(12) will, in a homotopy coherent diagram, make its appearence as
the homotopy,

X(012) : I ×X(0)→ X(2),

X(012) : X(02) ' X(12)X(01),

thus this square implies that the homotopies X(012) and X(234) interact minimally. Drawing
homotopies as 2-cells in the usual way, the square we have above is the interchange square and the
interchange law will hold in this system provided this square is, in some sense, commutative. In
models for homotopy n-types for n ≥ 3, these interchange squares give part of the pairing structure
between different levels of the model. They are there in, say, the Conduché model (2-crossed
modules, cf. Conduché, [41] and here, section ??) as the Peiffer lifting, and in the Loday model,
(crossed squares, cf. [90]), as the h-map. In a general dimension, n, there will be pairings like this
for any splitting of {0, 1, . . . , n} of the form {0.1. . . . , k} and {k, . . . , n}. These are related to the
Peiffer pairings that we have mentioned several times.

5.5 Useful examples

By the main title of this section, we intend to concentrate attention on the ways in which homotopy
coherence techniques clarify what is going on at certain points of the development of cohomology
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and related areas. Mostly these are instances of more general results listed or mentioned earlier in
this chapter.

5.5.1 G-spaces: discrete case

The first example concerns a G-space for G a discrete group. (For G a topological group, more
subtle arguments are needed although, as we will see later, the basic idea is the same.) We therefore
have a space, X, and an action

a : G×X → X, a(g, x) = g · x,

being a continuous map from the product to X satisfying some rules. We have considered such a
G-object in several different ways, and settings, not all of them ‘spatial’. One was to consider the
group, G, as a groupoid with a single object. This groupoid has usually been written G[1], with
the single object denoted by ∗ or similar. We then built a functor, X : G[1]→ Top, as follows:

• X(∗) = X;

• if g : ∗ → ∗ in G[1] and x ∈ X, then X(g) : X(∗) → X(∗) is simply X(g)(x) = g · x, and, of
course, X(g1g2) = X(g1)X(g2).

If we need another description of functors than merely elementwise, (which can be awkward for
categorification), it may help to replace the second part of the above by

X : G[1](∗, ∗)→ Top(X(∗),X(∗)),

as being the analogue of the usual : if F : A→ B, then, for any objects a1, a2 in A, there is a map

F : A(a1, a2)→ B(F (a1), F (a2)),

which has to satisfy some composition preservation rules (and some tightening up on notation,
since this F is really something like Fa1,a2 , and so on).

The point of this second description is two fold. We have, once unpacked from its notation, just
a function

G→ Top(X,X),

(and the codomain here is a monoid under composition of functions), which preserves multiplication
and identity. The image of this function is thus within Aut(X) ⊆ Top(X,X), the group of self
homeomorphisms of X, and so we get back to the other description of an action as a homomorphism,

G→ Aut(X).

(If G is a topological group and Top is Cartesian closed, then Aut(X) will be a topological group,
and a continuous action will correspond to a continuous homomorphism of the same form. If G is
a simplicial group and X is a simplicial set, we get back simplicial automorphisms and simplicial
actions as we looked at earlier (in section ??, starting on page ??, and the section following
that). Here, of course, G[1] is a simplicially enriched groupoid and the action yields an S-functor,
X : G[1]→ S, and so on. (You should play around with the different types of contexts to see what
works well and what less well.))
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Each of these descriptions of G-actions is useful. Here we will take the description of a G-space
as

X : G[1]→ Top.

(From now on, we drop the ‘blackboard’ font, X, for this and merely write X.) Now suppose
that we replace our space X by a homotopy equivalent one, Y , (along a homotopy equivalence,
(f : X → Y , f ′ : Y → X, H and K)), then we do not usually get a G-action on Y . (The situation
is, of course, essentially that which we examined in section 5.1, and it is worthwhile to see what a
‘bare hands’ approach gives in this situation.)

The theoretical, general, results that we have quoted give us a homotopy coherent diagram

Y : S(G[1])→ Top,

where Top is the simplicial enrichment of Top.
Of course, there is nothing magical about Top here and we could have equally well have used

S or a general simplicially enriched category, B. (Of course, for some purposes, we would need for
B to be ‘locally Kan’ and / or for certain limits or colimits to exit, in order to get a neat theory
here.)

The points to retain from this are that S(G[1]) is almost the ‘free-group’ comonadic simplicial
resolution of G. It is a simplicial monoid, not a simplicial group however. We have deformed the
group action to a homotopy coherent action and this is done by replacing G by a free simplicial
resolution of G. (This is another instance of ‘cofibrant replacement’.)The role of Aut(X) is no
longer viable. We cannot use Aut(Y ) in its place because, if we have g ∈ G, then we have a
diagram

X
f //

X(g)

��

Y

Y (〈g〉)
���
�
�

X
f
// Y

and Y (〈g〉) = fX(g)f ′, at least according to the recipe that we found in our earlier analysis. We
cannot guarantee that Y (〈g〉) will be an ‘automorphism’ of Y . We do have X(g−1) : X → X,
but then our algorithm for constructing Y gives Y (〈g−1〉) = fX(g−1)f ′, so Y (〈g−1〉)Y (〈g〉) '
Y (〈1G〉) ' 1Y . We thus do have Y (〈g〉) is a self equivalence (auto-equivalence) of Y , in our case,
a self homotopy equivalence, but we could be in another context, e.g. Cat, and the same basic
argument would work.

This is not the end of the example. We have

Y : S(G[1])→ B,

but therefore we have a simplicial description of Y as

Y : Ner(G[1])→ Nerh.c.(B).

We know what Ner(G[1]) is. It is what we have denoted BG, the classifying space of G. (Unlike the
other contextfs where we have met it, however, it is the domain not the codomain of the relevant
map.)

That gives us an additional intuition on several themes that we have met earlier, but there are
others that are closely related where it is not so clear how it might help.
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5.5.2 Lax and Op-lax functors and nerves for 2-categories

As we have mentioned lax functors several times informally, we should probably give a more formal
definition, especially as the basic idea is clearly closely related to homotopy coherence in some
‘intuitive’ way.

Our earlier discussion, for instance in section ??, related to a ‘functor-like’ mapping from a
category, A, into a 2-category, usually the 2-category Cat. We will give, below, a more general
definition for when we have a 2-category, A, as domain and a general 2-category, B, as codomain
for our generalised functor. To be able to relate back to the earlier case, it is useful to have some
terminology to handle that situation.

Definition: Suppose A is a 2-category. We say that it is a locally discrete 2-category or is
locally 2-discrete if, for each pair of objects, A0, A1 in A, the category A(A0, A1) is a discrete
category, (i.e., really just a set, so A has no non-identity 2-cells).

This will, thus, allow us to think of an ordinary category as being a 2-category, and it gives an
embedding of Cat into 2−Cat. We will shortly be considering a 2-category as an S-category (as on
page 146). We also will use such phrases as ‘since A has no non-identity 2-cells’ to indicate that
we are considering A as a locally discrete 2-category, without making a fuss about it or denoting
that version of A by some changed symbol. The natural tendency is then to extend this to saying
that a 2-category, A, ‘has no non-identity 3-cells’, although we have not considered 3-categories at
all as yet.

If the 2-category is a locally discrete one, then, naturally, the resulting S-category is a locally
discrete S-category, as well.

Suppose now that A and B are both 2-categories.

Definition: A lax functor, F = (F, c) : A → B, assigns

• to each object A of A, an object, F (A), of B;

• to each pair of objects, A0, A1, of A, a functor,

F : A(A0, A1)→ B(FA0, FA1);

• to each composable pair of 1-cells / morphisms, (f, g) of A, a 2-cell,

cf,g : F (g)F (f)⇒ F (gf),

depending naturally on f and g, and to each object A of A, a 2-cell, cA : idFA ⇒ F (idA),

such that the coherence conditions, below, are satisfied:

• for any composable triple, (f, g, h), of 1-cells / morphisms of A, the diagram

F (hg)F (f)
cf,hg +3 F (hgf)

F (h)F (g)F (f)

cg,h◦F (f)

KS

F (h)◦cf,g
+3 F (h)F (gf)

cgf,h

KS

commutes;
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• for any 1-cell, f ∈ A(A0, A1), the diagrams

F (f)F (idA0)
cf,idA0 +3 F (f ◦ idA0) = F (f)

F (f) = F (f) ◦ idF (A0)

F (f)cA0

KS iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii

and similarly for idA1 on the other side, commute.

Remarks: (i) Of course, any 2-functor corresponds to a set of data as here, but with each
F (g)F (f) = F (gf) and all the cf,gs being the relevant identities.

(ii) In some case, for each A, cA is the identity map, i.e., the lax functor F preserves identities.
In this case the terminology ‘normal lax functor is often used. This is consistent with the use of
‘normalised’ when referring to constructions such as the bar resolution. Most of the lax functors
that we will meet will be ‘normal’.

(iii) A quick look forward a few pages to page ?? and the definition of (lax) monoidal functor
should convince you that the two ideas are closely related. Any 2-category is a ‘strict’ bicategory
and any monoidal category ‘is’ a bicategory having just a single object, so bicategories (also called
weak 2-categories) are a common generalisation of both 2-categories and monoidal categories. That
being the case, there is a generalisation of lax functor, as defined above, to one, F : A → B, in
which A and B can be bicategories. (The formulation is left to you for later, when you have seen
the definition of lax monoidal functor. It needs some more precision on the notion of bicategory so
as to introduce notation for the ‘associator’ 2-cell, and the left and right unit 2-cells, and then a
little thought on how to adapt ‘lax monoidal functor’ to ‘lax functor’ in that more general sense.)

(iv) The notion of pseudo-functor between 2-categories or, more generally, between bicategories
is, as was said earlier, the special case of a lax functor in which the two types of 2-cell, both the
cf,g and the cA, are invertible.

(v) Of importance below will be the notion of an ‘op-lax functor’, F : A → B, in which the
arrow of the 2-cells is reversed, so cf,g : F (gf)⇒ F (g)F (f), etc. This can be accommodated within
the system of theory of lax functors by the simple device of forming, from a 2-category, B (or more
generally), a new 2-category, B(2op), with each B(2op)(A,B) = B(A,B)op, so reversing the direction
of the 2-cells (and hence the notation: ‘(2op)’ = ‘opposite on 2-cells’). With this, an op-lax functor,
F : A → B, is just a lax functor F (2op) : A(2op) → B(2op). Of course, if A is locally discrete, and,
thus, has no non-identity 2-cells, then . . . , enough said (provided that F is normal)! Similarly, if
F is a pseudo-functor, then it is both lax and op-lax, or, more precisely, it determines both a lax
and an op-lax functor.

Examples: We have already seen some examples of lax, op-lax or pseudo functors, so will not
give more here, except, of course the following. We cannot resist it.

Any crossed module gives rise to a 2-category, in fact a 2-group(oid), so it is natural, in the
context of our discussion, to look at pseudo-functors between these 2-categories. (Why not ‘lax’ or
‘op-lax’, ..., simply that all 2-cells in these 2-categories will be invertible, so the other notions all
essentially reduce to ‘pseudo’, with adjustment being made for the order of composition, etc.) We
will examine in some detail what the resulting ‘weak morphisms’ of crossed modules look like a bit
later, but would suggest that examination of the idea now and by you would at the same time
prepare the way for that later discussion and give you some experience of handling these ideas if
you have not met them in detail before.
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Given all this about lax/op-lax and pseudo-functors, how does this relate to homotopy coher-
ence? To examine this, let us look at homotopy coherent diagrams in a 2-category. We noted
earlier (page 146) that any 2-category, C, could be considered as an S-category, C∆. (We should
note in passing that, as each C(A,B) is a category, C∆(A,B), which is just the nerve of C(A,B),
will not usually be a Kan complex, but will always be a weak Kan complex / quasi-category.)

Suppose A is a category and B a 2-category (which we will consider as an S-category, B∆, in
the above way, but will not write the suffix most of the time). Let F : S(A)→ B∆ be a S-functor,
and thus a homotopy coherent diagram of type A in B. We have F gives:

• to each object A of A, an object F (A) of B;

• to each pair of objects, A0, A1, and each f : A) → A1, a morphism / 1-cell, F (f) : F (A0)→
F (A1);

• to each composable pair (f, g) in A, . . . , what?

A composable pair like this corresponds to a 2-simplex

g

��???????
f
??�������
gf

//

in the nerve of A, so to a functor, p(f, g)q : [2]→ A, which will induce S(p(f, g)q) : S[2]→ S(A),
and, composing that with F gives

F (g)

��???????
F (f)

??�������
F (gf)

//

with a 2-cell, cf,g : F (gf) ⇒ F (g)F (f). This looks like it is the data for an op-lax functor.
We need to check dimension 3, and a composable triple, (f, g, h), gives a diagram [3] → A,
and hence a tetrahedral diagram in B, when mapped by F :

S[3]→ S(A)→ B.

This diagram ‘really lives’ in the category B(F (A0), F (A3)), where A0
f→ A1

g→ A2
h→ A3,

and is a square
F (h)F (gf) +3 F (h)F (g)F (f)

F (hgf)

KS 2:mmmmmmmmmmmm

mmmmmmmmmmmm
+3 F (hg)F (f)

KS

with a diagonal, and, as there are no non-trivial 3-cells in B, there are no non-trivial 2-
simplices in B(F (A0), F (A3)) (either thought of as a category or as the associated simplicial
set). As a result, we can conclude that the square commutes.
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We thus have that a h. c. functor, F : A→ B∆, reverting to the full notation, is exactly the same
as a normal op-lax functor from A, considered as a locally discrete 2-category, to B.

We can note also that this gives a way of defining a nerve for a 2-category.

Definition: If B is a 2-category, we define its nerve to be Nerh.c.(B∆). We will write it Ner(B).

This nerve functor has been studied by Blanco, Bullejos, and Faro, [19] and by Bullejos and
Cegarra, [35] and is a specialisation of Duskin’s nerve of a bi-category, [57]. Other work on this
includes Gurski, [68], who links the construction with Verity’s complicial sets, which we mentioned
earlier. Here we will explore its properties and applications a bit more. This nerve, and also that
extension of it to bicategories, is sometimes called the Duskin nerve of the 2-category or sometimes
its geometric nerve.

Of course, if B is locally discrete, i.e., is a category masquerading as a 2-category, then Ner(B)
is just the nerve of that category.

In general, the vertices of Ner(B) are the objects of B, whilst the 1-simplices are the morphisms.
The two simplices are diagrams of the form

.

  AAAAAAA

. //

>>}}}}}}}
� �� �KS

.

and the 3-simplices correspond to tetrahedra with one of these 2-simplices in each face, hence
together satisfying a cocycle condition. Above that dimension, as we will see, things are determined
by their 3-skeletons.

Remarks: We could derive at least two other nerves from this construction, both of which give
useful information on B.

(i) We could define a nerve using lax rather than op-lax functors from the various [n] to B. In
this case, the basic 2-simplex would look like

.

  AAAAAAA

. //

>>}}}}}}}

�� ��
��

.

This variant does need mentioning, but its detailed treatment will not differ greatly from that of
the geometric nerve, since it is Ner(B(2op)). If we need it, we can write it in that form or introduce
as a shorthand, Nerlax(B).

(ii) We could also restrict attention to a ‘pseudo’-version of this geometric nerve, in which the
2-cell is specified to be invertible:

.

  AAAAAAA

. //

>>}}}}}}}
� �� �KS ∼=

.

This is related to the 2-nerve of a bicategory as considered by Lack and Paoli, [87]. We will not need
to use this explicitly as the nearest we get to it has B a 2-groupoid - so all its 2-cells are invertible.
It is important, however, to note that passing between Nerlax(B) and Nerlax(B), one does not get
an isomorphic simplicial set. This pheomenon can already be seen for nerves of groupoids. If you
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take, say, a 2-simplex in the nerve of a groupoid and then form the corresponding 2-simplex with
the inverses you get the conjugate 2-simplex and this is not giving an automorphism of the nerve
as it is incompatible with the face maps.

What sort of properties does this geometric nerve functor have? What should we intuitively
expect, so some idea could guide our investigations?

For a small category C, Ner(C) has some very interesting and useful properties, (see the
discussion around about page 155). We pick out that, if we have a k-simplex, σ in Ner(C) with
k > 1, then σ is completely determined by its 1-skeleton. Its 1-skeleton encodes not only that
the various edges fit together, but each triangular face of σ records the fact that the d1-face is the
composite of the other two. We saw this in section 5.4.2. We can formalise this in other terms
using the terminology of an earlier section, ?? (especially page ??). For any k > 2, and in any
diagram

∂∆[k] //

��

Ner(C)

∆[k]

::t
t

t
t

t

there is a unique choice of dotted arrow. Remember that this is referred to as follows:

Lemma 32 For any small category, C, Ner(C) is a 2-coskeletal simplicial set.

Proof: Suppose that we have the shell, x = (x0, x1, x2, x3) of a possible 3-simplex, i.e.,

x : ∂∆[3]→ Ner(C),

then we have the individual ‘faces’, xi that fit together correctly. For instance, x3 is the ‘face
missing out 3’, i.e.,

x(1)
x(12)

""EEEEEEEE

x(0)

x(01)
<<yyyyyyyy

x(02)
// x(2)

and, as this is in Ner(C), this means x(02) = x(12)x(01), and so on. We thus have

x(03) = x(23)x(02) = x(23)x(12)x(01).

The only 3-simplex that will work is, of course, σ := (x(01), x(12), x(23)) and so, in the diagram

∂∆[3]
x //

��

Ner(C)

∆[3]

σ

::t
t

t
t

t

this σ works and is the only choice. Of course, the same is true in higher dimension replacing 3 by
k. (You are left to prove the general form of this, e.g. by induction or directly.) �

What about Ner(C), when C is a 2-category? We might guess the following:
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Proposition 39 For any (small) 2-category, C, Ner(C) is a 3-coskeletal simplicial set.

Proof: We assume given x = (x0, x1, x2, x3, x4), the shell of a potential 4-simplex, and hence

∂∆[4]
x //

��

Ner(C)

∆[4]

?σ

::t
t

t
t

t

and try to see how to build the dotted arrow, σ, so xi = diσ for each of the indices, i. The simplest
way to do this is to see what makes up such a σ. It is a h.c. diagram of type [4] in C corresponding,
therefore, to an S-functor,

σ : S[4]→ C,

and we discussed S[4] in section 5.4.5. The key diagram is a cube in the category, C(x(0), x(4)).
That cube needs to commute as there are no non-identity 2-cells in C(x(0), x(4)). We saw (again
in section 5.4.5) that, of the 6 faces of this cube, 5 come from the 5 faces of the 4-simplex, hence,
if σ is to complete the diagram, these 5 faces must coincide with those specified by the xi for
i = 0, 1, . . . , 4. In other words, we have, within x, the information on all but one face of that cube.
Each of those faces is commutative as it comes from a xi : S[3]→ C. What about the ‘extra face’?
This is (using the same sort of notation as before):

x(34)x(23)x(02)
x(34)x(23)x(012)+3 x(34)x(23)x(12)x(01)

x(24)x(02)

x(234)x(02)

KS

x(24)x(012)
+3 x(24)x(12)x(01)

x(234)x(12)x(01)

KS

but the commutativity of such a diagram, in general, is equivalent to the interchange law holding
in C:

.

x(02)

##

x(12)x(01)

;;
�� ��
�� x(012) .

x(24)

##

x(34)x(23)

;;
�� ��
�� x(234) . ,

which, of course, it does.

It follows that, given x, we already have all the information needed to specify a unique σ, which
completes the proof. �

The following could have been mentioned much earlier, but was not needed until now:

Proposition 40 The nerve functor,

Ner : Cat→ S,

is full and faithful.



174 CHAPTER 5. HOMOTOPY COHERENCE AND ENRICHED CATEGORIES.

Proof: The ‘reason’ for this result is that all the information on a (small) category, C, is contained
in the first few levels of its nerve, Ner(C). The objects are the vertices and thus form Ner(C)0;
the 1-simplices are simply the arrows, so levels 0 and 1 give, together with the face maps and
degeneracies, the basic combinatorial structure of C. For the composition, one uses Ner(C)2, of
course, and the fact the Ner(C) is 2-coskeletal.

That is the ‘reason’, now for the proof!
We have to examine the function

Ner(C)C,D : Cat(C,D)→ S(Ner(C), Ner(D)),

for C, D arbitrary small categories. (Check back for ‘full’ and ‘faithful’ on page ?? if you have
forgotten their meanings.)

This is largely a question of routine checking. If f : Ner(C) → Ner(D) is a simplicial map,
then f0 is an assignment

f0 : Ob(C)→ Ob(D)

and
f1 : Arr(C)→ Arr(D)

compatibly with source and target maps, so f has the combinatorial structure necessary for a
functor. Compatibility with composition is a consequence of f2 and its compatibility with the face
maps. Preservation of identities is obvious, and f defines a functor from

F : C→ D

from which, on applying Ner, we get back f itself. We thus have that Ner(C)C,D is surjective. In
fact, better than that, we have constructed an inverse for it, so it is bijective. (Of course, there are
some minor checks to do, but these are straight forward.) �

This says that, in many ways, Cat behaves like a subcategory of S and this is one of the intuitions
that fit well with our categorification process. It motivates quasi-categories and complicial sets,
both models for certain classes of weak infinity categories and weak infinity categories are one way
of trying to understand cohomology in the general non-Abelian setting.

What about 2-categories? Is the nerve from 2−Cat to S full and faithful? In some ways, we
should not expect it to be. It is defined using lax / homotopy coherent functors, so we should expect
it to reflect that somewhere. There is also a less explicit reason for suspecting that it would not be
full and faithful. It ‘feels’ as if 2−Cat is not a complete ‘categorification’ of Cat. Categorification’
certainly involves replacing sets by categories, functions by functors, etc., as in the passage from
Cat to 2−Cat, but also involves weakening ‘equality’ to ‘equivalence’. Composition and identities
should become weakened, so bicategories form a fuller categorification of Cat than do 2-categories.
Duskin, [57], has given a generalisation of the nerve to bicategories, and this has been pushed
further by Lack and Paoli, [87]. We will not go that far. (Further material can be found in the
articles [18, 19, 35].)

This suggests, perhaps, that we look at Ner from the point of view of lax / op-lax / pseudo
functors.

First recall that a normal op-lax functor, F : A → B is an op-lax functor that preserves the
identities.
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Lemma 33 A normal op-lax functor, F : A → B, between 2-categories, induces a simplicial
mapping, Ner(F) : Ner(A)→ Ner(B).

Proof: We will give this ‘as is’, i.e., without that much reflection on what makes it work. That we
will return to afterwards.

We write F = (F, c), as above, where F is the assignment on objects, and also denotes, some-
times with suffices, as in FA0,A1 , the functor between the relevant hom-categories, whilst c assigns
2-cells to composable pairs.

As a lax functor is neatly defined on objects and arrows, there is no problem in defining Ner(F)i
for i = 0 and 1. Moreover, as Ner(A) and Ner(B) are 3-coskeletal, if we can define Ner(F) in
dimension 2, then it can be automatically generated in higher dimensions, since, for k ≥ 3, any
k-simplex in Ner(B) is determined by its 2-skeleton. We thus have to concentrate on dimension 2.

A 2-simplex, σ, in Ner(A) consists of a 4-tuple σ = (σ(12), σ(02), σ(01);σ(012)), that is, of
three arrows in C fitting together in a triangle, together with a 2-cell filling that triangle:

A1

σ(12)

  BBBBBBBB

A0
σ(02)

//

σ(01)
>>||||||||

� �� �KS

A2

with σ(012) : σ(02) ⇒ σ(12)σ(01) in A(A0, A2). The op-lax functor F assigns to the composable
pair, (σ(01), σ(12)), a 2-cell

cσ(01),σ(12) : F (σ(01)σ(12))⇒ F (σ(01))F (σ(12)),

and also a functor,
F02 : A(A0, A2)→ B(F (A0), F (A2)),

which, consequently, gives

F (σ(012)) : F (σ(02))⇒ F (σ(12)σ(01))

These fit together as follows:

F (A1)
F (σ(12))

$$IIIIIIIII

F (A0)

F (σ(01))
::uuuuuuuuu ++

F (σ(02))

33

� �� �KS

� �� �KS F (A2)

We look at the composite 2-cell and, of course, it forms, with the other data, a 2-simplex that we
take as Ner(F)(σ). More formally

Ner(F)(σ) = (F (σ(12)), F (σ(02)), F (σ(01));α),

where α = cσ(01),σ(12)]1F (σ(012)).
It is clear that this satisfies the requirements for the face maps of the nerves and the degeneracy

maps work as well, since F is assumed to be a normal op-lax functor. �
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Because of this, it is clear that, considered as a functor defined on the category, 2−Cat, of
2-categories and (strict) 2-functors, Ner cannot be full, but suppose we define a new category
2−Catop−lax with the same objects, but with the normal op-lax functors as the morphisms between
them. The above lemma shows that Ner extends to a functor, Ner : 2−Catop−lax → S. Is this
full and faithful?

Let us examine a simplicial map f : Ner(A) → Ner(B). Can we construct an op-lax func-
tor from it? We certainly have an assignment, F , on objects and on 1-cells, given by f0 and
f1 respectively. For any pair, x(01) : A0 → A1, x(12) : A1 → A2, we have a composite
x(02) := x(12)x(01) and the identity 2-cell, id : x(02) ⇒ x(12)x(01), written in that way for
convenience. This gives a 2-simplex, (x(12), x(02), x(01); id) ∈ Ner(A)2 and hence a 2-simplex,
f2(x(12), x(02), x(01); id) ∈ Ner(B)2. We know, since f2 is compatible with face maps, that this
2-simplex has the form (f1x(12), f1x(02), f1x(01); y) ∈ Ner(A)2, where y is some 2-cell,

y : f1x(02)⇒ f1x(12)f1x(01),

and so it is sensible to take F = (F, c), as suggested above, where, abusing notation slightly,
F (A) = f0(A),

FA0,A1 : A(A0, A1)→ B(FA0, FA1)

is defined on objects by f1, i.e., F (x) = f1(A0
x→ A1), (but we still need F on 2-cells or, if you

prefer, on the arrows in the A(A0, A1)), and

cx(01),x(12) = y,

as in the 2-simplex above.
We are, thus, left to define the FA0,A1 on the 2-cells and to check that they give a functor, etc.
Suppose

A0

t(α)

((

s(α)

66� �� �KS
α A1 ,

is a 2-cell of A, then

A1

BBBBBBBB

BBBBBBBB

A0
s(α)

//

t(α)
>>||||||||

� �� �KS
α

A1

is a 2-simplex, σ = (id, s(α), t(α);α), of Ner(A) and we get f2(σ) = (id, f1s(α), f1t(α);F (α)),
defining F (α). (Note we are using that f is compatible with degeneracies here, and can deduce the
resulting op-lax functor is going to be a normal one, i.e., identity preserving.)

We have to check that, thus defined, FA0,A1 : A(A0, A1) → B(FA0, FA1) is a functor. We
suppose that we have composable two cells

A0
//
$$� �� �KS

β

::� �� �KS
α

A1 ,
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and have to compare F (βα) with F (β)F (α). To do this, we construct a 3-simplex in Ner(A) that
we will call τ , with faces:

d0τ = (idA1 , idA1 , idA1 ; id)

d1τ = (idA1 , s(α), t(α);α)

d2τ = (idA1 , s(α), t(β);βα)

d3τ = (idA1 , s(β), t(β);β)

which, thus, fit together, diagrammatically, as:

odd numbered faces

1
= // 2

=

��
0

t(β)

OO ??����������������

s(α)
//

@@@@\d
β

� �� �KS
α

3

even numbered faces:

1

=

��>>>>>>>>>>>>>>>>
= // 2

=

��
0

t(β)

OO

s(α)
//

� �� �KS
βα

3

As Ner(A) is 3-coskeletal, (or, alternatively, because A has no non-trivial 3-cells!), this determines
a 3-simplex, τ , as promised. Now we map this across to Ner(B) and we get

F (βα) = F (β)F (α),

as expected. In other words, FA0,A1 is a functor.

The obvious question to ask now is whether or not Ner(F) gives us back f . The way F was
constructed on objects and at the object level of each FA0,A1 gives back f0 and f1 fairly obviously,
so the crucial examination will be in dimension 2, ‘3-coskeletal-ness’ handling higher dimensions.

Suppose σ = (σ(12), σ(02), σ(01);α) is in Ner(A). Consider the 3-simplex, that we will denote
by τ , having faces

d0τ = (σ(12), σ(12)σ(01), σ(01); id)

d1τ = (id, σ(02), σ(12)σ(01);α)

d2τ = s1d0σ = (σ(12), σ(12), id; id)

d3τ = (σ(12), σ(02), σ(01);α) = σ,

(do check that this is a 3-simplex of Ner(A)). Map it over to Ner(B) using f . The resulting
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f(τ) has

d0fτ = (f1(σ(12)), f1(σ(12)σ(01)), f1(σ(01)); c)

d1fτ = (id, f1(σ(02)), f1(σ(12)σ(01));F (α))

d2fτ = s1d0f(σ) = (f1(σ(12)), f1(σ(12)), id; id)

d3fτ = (f1(σ(12)), f1(σ(02)), f1(σ(01));F (α))α) = f2(σ).

Here the first use of F (α), as the 2-cell of d1f(τ), is ‘by definition’, whilst its occurrence as the
2-cell of d3fτ is deduction from the fact that f(τ) is a 3-simplex of Ner(B). We have proved (bar
invoking the 3-skeletal nature of the nerves, so as to complete the final check) that

Proposition 41 Given any simplicial map f : Ner(A)→ Ner(B), there is a normal op-lax functor
F : A → B for which Ner(F) = f . �

In fact, as the data for F is uniquely determined by that for f , and conversely, we have the
more detailed statement:

Proposition 42 The nerve construction gives a full and faithful functor

Ner : 2−Catop−lax → S.

�

This only addresses the basic level of information. In S, we have a lot of extra ‘layers’ of
structure, homotopies, homotopies between homotopies, etc., as S is an S-enriched category. The
category 2−Cat is also S-enriched, as we have been using for some pages now, so what about
2−Catop−lax? Are there analogues of natural transformations here, as there certainly are in 2−Cat
itself? What are those analogues in this op-lax context? Do they behave nicely with respect to
this nerve construction? (Recall that with Cat, natural transformations correspond to homotopies
under Ner, so that seems a good question to ask in this wider context.) We need a definition of
a (normal) lax transformation suitable for this setting. (We adapt this from Blanco, Bullejos and
Faro, [18], as their treatment is explicitly linked to cohomological applications.)

Definition: Given two normal op-lax functors, F1,F2 : A → B, with Fi = (Fi, ci) for i = 1, 2,
a (op)-lax transformation, or (op)-lax natural transformation, from F1 to F2 is a pair, α = (α, τ),
where

(i) α assigns to each object A of A, an arrow

αA : F1A→ F2A

in B;
and

(ii) τ assigns to each pair of objects, (A0, A1) of A, a natural transformation between functors
from A(A0, A1) to B(F1A0, F2A1), whose value at a 1-cell, f : A0 → A1, (which is, thus, an object
of the category A(A0, A1)), is a 2-cell, τf , in B,

τf : αA1F1(f)⇒ F2(f)αA0 ,
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(so the diagram

F1(A0)
αA0 //

F1(f)
��






AIτf

F2(A0)

F2(f)

��
F1(A1) αA1

// F2(A1)

is filled by τf ) such that, if η : f ⇒ g is an arrow in A(A0, A1),

(F2(η)]0αA0)]1τf = τg]1(αA1]0F1(η)),

(corresponding to a diagram of the form

αA0

��

$$::� �� �KS
F1(η)

αA1

��$$::� �� �KS
F2(η)

the two sides of the equation being the base and the front sides, and the top and the back, respec-
tively).

These data are to satisfy:
1. τ1A = idαA (a normalisation condition);
and
2. coherence with the structure maps, ci, of Fi, for i = 1, 2. (This is specified by a prismatic

diagram: for given A0
f→ A1

g→ A2, we get something like

��)
)))))) //

��)
))))))EE���

""DDDDD //

EE���

""DDDDD

//

with c1;f,g and c2;f,g on th left and right ends respectively and τf , τg and τgf on the three rectangular
faces. You are left to label the diagram yourself and thus to represent this equationally
if you wish, or need, to.)

It is often convenient, since ‘op-lax natural transformation’ is a bit of a mouthful, to called such
a thing simply a deformation, (see the use in [35], for instance).

These lax natural transformations compose in a fairly obvious way, using a simple composition
on the αA-parts, and a composition of the τf -parts obtained by juxtaposing the resulting squares
and 2-cells. This leads to a category, OpLax(A,B), of normal op-lax functors from A to B, and
normal lax transformations between them. This leads to:

Proposition 43 From the category 2−Catop−lax, and on further enriching with lax transforma-
tions, we get a 2-category. �
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The details should be more or less clear to you, so are left to you to complete.

Remarks about ‘pseudo’ and the direction of τ : (i) There is a choice that is made when
defining lax natural transformation above. The natural transformation τf ‘measues’ the extent
to which the naturality square, determined by the αs, F1(f) and F2(f), does not commute, but
why did it go from αA1F1(f) to F2(f)αA2 , and not the other way around. The direction is a
‘convention’. It is the ‘default choice’ and why that choice was made is probably ‘lost in time’ !
The opposite choice works just as well, but often in the sort of examples we consider, the choice is
almost completely immaterial as the τf are all invertible. This happens when B is a 2-groupoid,
rather than just a 2-category, and we will see examples in which that is the case shortly.

(ii) If one takes the definition and strengthens it by requiring that each τf be invertible, then
we get a version of the definition of a normalised pseudo-natural transformation. The case of this
where A is locally discrete (i.e., is just a category) is considered in Borceux and Janelidze, [22]. Of
course, if B is a 2-groupoid, every deformation will be a pseudo-natural transformation, however it
is still important to have a direction on the 2-cells, even though they are all invertible.

As we have said earlier, functors, which have a natural transformation between them, induce
homotopic simplicial maps under the nerve functor. The natural transformation data gives the
data for the homotopy. We want to see if anything similar happens with op-lax functors and
deformations.

By way of a ‘warm-up’, we will first look at the 1-categorical case. Suppose α : F0 ⇒ F1 :
A → B is a natural transformation between functors from A to B, then we have simplicial maps,
fi = Ner(Fi) : Ner(A)→ Ner(B), and want to construct a homotopy,

h : Ner(A)×∆[1]→ Ner(B) h : f0 ' f1,

(using α). Of course, α gives us a family {αA} of 1-simplices of Ner(B), so we can use that to
define the map, h, that we want on 〈a1〉 ×∆[1], for a 1-simplex (a1 : A0 → A1) of Ner(A), by the
diagram:

f1(a1) //

αA0

OO ??����������������
f0(a1)

//

αA1

OO

which commutes (since α is natural), so causes no difficulty on defining the diagonal. For an n-

simplex, σ = (A0
a1→ A1 → . . .

an→ An) in Ner(A)n, we just repeat that recipe on each edge, getting
a commutative prism, and defining h on σ × ∆[1]. Clearly this works, although we have left out
the detailed formulae.

Now replace A and B by two 2-categories, F0 and F1 by op-lax functors, and α by an op-lax
natural transformation. Much of the construction looks as if it works, with some modification. If
we write α = (α, τ) : F0 = (F0, c0) ⇒ F1 = (F1, c1) : A → B, and then put fi = Ner(Fi), we can
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adapt the diagram for h on 〈a1〉 ×∆[1] (with the same notation as above) to be

f1(a1) //

αA0

OO ??����������������
f0(α1)

//

????[c
τa1

??????

αA1

OO

With that basic change, it is reasonably routine (i.e., a bit of intuition, plus a lot of checking!) to
construct h as a homotopy defined on the 1-skeleton of Ner(A). Given the coskeletal propertes of
Ner(B), we have to work out how to give h on Ner(A)2, i.e., on the ‘cylindrical’ prisms of form
(σ(12), σ(02), σ(01);σ(12)) × ∆[1]. (This is left to you, but first glance - in fact, stare, - at the
diagram for naturality with respect to 2-cells and the coherence diagram for condition 2 of the
definition of op-lax natural transformation.) Once you have done the work, you will have a proof
of the following:

Proposition 44 (see Blanco, Bullejos, Faro, [19]) Let F0,F1 : A → B be two normal op-lax
functors between 2-categories. Every deformation, α : F0 ⇒ F1, induces a homotopy, h = Ner(α) :
Ner(F0)⇒ Ner(F1). �

Note: due to a difference in conventions, the above reference states the direction of h to be
reversed.

It is clear that, as the construction of h leads to one of the two 2-cells in each of the above
diagrams being an equality, and as not every simplicial homotopy between maps from Ner(A) to
Ner(B) would have that form, not all such homotopies can be realised by deformations. However, if
we are working with ‘pseudo’ rather than merely ‘lax’ situations, for instance, if B is a 2-groupoid,
then, in any such square,

f1(a1) //

αA0

OO ??����������������
f0(α1)

//

????[c
τ1

???? �#
τ2

αA1

OO

we have that τ2 is an invertible 2-cell, so we can build a new square replacing τ2 by an identity
2-cell and τ1 by τ1τ

−1
2 , and still giving a homotopy as needed. This suggests the following result

(which we leave to you to prove more formally).

Proposition 45 Suppose Fi : A → B, i = 0, 1, are two normal op-lax functors with B a 2-groupoid,
then, if there is a homotopy h : f0 ' f1, where fi = Ner(F)i, then there is a deformation, α, from
F0 to F1, and the resulting homotopy, Ner(α), is homotopic to the given h. �
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5.5.3 Weak actions of groups

This example is mostly a continuation of the previous one, but, as it is one we have considered
before, and is very central to our cohomological theme, it seems a good thing to start a new section
for it.

Earlier, in section ??, we looked at the way that, in an extension of groups,

E : 1→ K → E
p→ G→ 1,

a section of p gave a ‘lax’ action’ of G on K. At that point in these notes, we had not a suffi-
cient knowledge of ‘lax’ or ‘pseudo’ ideas, nor the concepts and terminology necessary for a fuller
treatment. We have now!

We start by recalling (see page 10 for starters) a little of the terminology and notation and the
fundamental ideas of actions in the algebraic context. We have a group, G, and so a single object
groupoid, G[1]. If we have a functor, K, from G[1] to Grps, then the functor picks out a group,
K = K(∗), where ObG[1] = {∗}, and a mapping

K∗,∗ : G[1](∗, ∗)→ Grps(K,K) = End(K),

where End(K) is the monoid of endomorphisms of K. The domain here is, of course, just G and the
image will be within the submonoid of invertible endomorphisms, i.e., within Aut(K), the group
of automorphisms of K, so we get one of the usual formulations of an action of G on K, namely as
a homomorphism from the group G to Aut(K).

Remark: If we start with G a groupoid, then it already has a set, G0, of objects, (and we
do not need to make G into a groupoid!), then a functor K : G → Grps will pick out a family
{K(x) | x ∈ G0} of groups, and, if G(x, y) is non-empty, morphisms between K(x) and K(y).
(Remember G is not necessarily a connected groupoid.) Our discussion for groups extends without
problem to groupoids. (A good reference for this is Blanco, Bullejos and Faro, [19], and that has
been used as one source for the treatment here.)

We have seen, page ??, that natural transformations between such functors correspond to
conjugation by elements of K.

Given our interest in lax and pseudo functors and natural transformations, it is natural to look
at such things in this ‘action’ context and to see if they correspond to anything ‘well known’.

We will do this somewhat pedantically, also repeating ideas that were met earlier. We treat G,
firstly, as the groupoid, G[1], as before, and then as a (2-)discrete 2-category, which will also be
written G[1]. We look at Grps as a subcategory of Grpds and then enrich Grpds using the functor
category construction, so

Grpds(G,H) = HG = Func(G,H),

so making Grpds into a 2-category, denoted Grpds. We also will need it as an S-category via the
nerves, Ner(HG).

All 2-cells in Grpds are invertible, so ‘lax’, ‘op-lax’ and ‘pseudo’ more or less coincide. Now for
the ‘deconstruction’ of a lax functor, K = (K,σ),

K : G[1]→ Grpds.

This will correspond, according to the above definition to assignments:
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• As G[1] has just one object, we get a group (or more generally a groupoid), K = K(∗), as
with an action;

• For any two objects of G[1] (well that is easy, both must be ∗!), a functor

K∗,∗ : G[1](∗, ∗)→ Grpds(K,K),

where G[1](∗, ∗) = G, but take care, here. Since the 2-category G[1] is a locally discrete
2-category, G is also being thought of as a discrete category, that is a set ; the vertical
composition in the 2-category, i.e., of 2-cells, is necessarily trivial, the horizontal composition
is the multiplication of the group. This just gives a family, {K(g) | g ∈ G}, of endomorphisms
of K. For convenience, if g ∈ G, K(g) is an endomorphism of K and we may write gk for
K(g)(k).

• For any three objects of G[1] (no comment this time!), a natural transformation, σ, between
‘functors’ from G[1](∗, ∗) ×G[1](∗, ∗) to Grpds(K,K), whose component on a pair (g2, g1) is
a 2-cell

σ(g2,g1) : K(g2g1)⇒ K(g2)K(g1).

Note that (g2, g1) is a composable pair of morphisms in G[1]! (As usual we will want K(1G) to
be the identity endomorphism of K, i.e., for K to be normal and also for σ(1,g) = σ(g,1) = 1K .
As we saw when considering ‘auto-equivalences’, back in section ??, such a set-up gives that
each K(g) is an automorphism of K, not just an endomorphism.)

The pair, K = (K,σ), must satisfy the coherence rule with the associative law, i.e., if g3, g2, g1 ∈ G
(thus are composable maps in G[1]!), the diagram

K(g3g2g1)
σ(g3g2),g1 +3

σg3,(g2g1)

��

K(g3g2)K(g1)

σg3,g2K(g1)

��
K(g3)K(g2g1)

K(g3)σg2,g1

+3 K(g3)K(g2)K(g1)

commutes.
We could take thus apart further, ..., but will leave that for you to check up on, as we

have done this all before in various forms and guises. Natural transformations correspond to
conjugation (page ??) in this context. Autoequivalences are automorphisms (same page) and so
on. The coherence rule is a cocycle condition, of course.

This gives us the data for an op-lax functor,

K : G[1]→ Grpds,

but, of course, only uses a tiny part of Grpds as it only involves one object, namely K. We have a
sub 2-category, determined by K, that we will write End(K) as it is all the endofunctors of K and
the natural transformations between them, with composition as the ‘horizontal’ operation. Within
End(K), we have Aut(K) (and, yes, this is essentially the same notation as what we saw earlier, in
our initial discussion of lax actions in section ??, and even earlier, way back in section 2.1.1, except
that here Aut(K) is the 2-group, whilst earlier we used the notation for the corresponding crossed
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module). This is the sub 2-category of End(K) whose 1-cells are the automorphisms of K. It is, as
we just said, a 2-group.

We thus have that our op-lax functor, K, is ‘really’ an op-lax functor

K : G[1]→ Aut(K),

and is also a pseudo-functor, as all 2-cells involved are invertible. (We have that last statement
was true throughout our recent discussion, of course, as Grpds has all 2-cells invertible.)

Definition: Given groups, G and K, a lax action or weak action of G on K is an op-lax functor

K : G[1]→ Aut(K).

We can rewrite the above discussion to get more convenient forms of this.

Proposition 46 (i) A weak action of G on K assigns, to each g ∈ G, an automorphism g(−) :
K → K, and to each pair (g1, g2) in G × G, an element k = k(g1, g2) in K such that, for any
x ∈ K,

k.(g2,g1)x = g2(g1x).k,

(i.e., the inner automorphism by k is the difference between operation with g2g1 on the one hand,
and with first g1 and then g2 on the other);
and satisfying : for all x ∈ K and triples (g3, g2, g1) of elements of G

a) 1x = x;
b) k(1, 1) = 1;
c) (cocycle condition)

k(g3, g2)k((g3g2), g1) = g3k(g2, g1)k(g3, g2g1).

Conversely any such assignment determines a weak action.
(ii) A weak action of G on K determines, and is determined by, a simplicial mapping

k : Ner(G[1])→ Ner(Aut(K)).

Proof: (i) is just the result of taking apart the definition, and then interpreting the terms in more
elementary language, so ... .

(ii) is just a corollary of our earlier result that Ner is full and faithful. �

This second part deserves some more comment. The domain of k is the classifying simplicial
set of G, that which has been written BG in earlier chapters. (As an aside, we should note that
often in earlier chapters, G was a sheaf of groups on some space, or, more generally, a group object
in some topos. The corresponding theory of lax and pseudo-functors, lax natural transformations,
etc., also applies there with minimal disruption / adaptation. Adapting it to the situation in which
G and K are bundles of groups, i.e., bringing in a topology on them is somewhat harder, but can
be done, as can a smooth ‘Lie’ theory of these.)

Beware: in our earlier discussion, composition order may have been reversed.
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The codomain of k is interesting and raises a question. That nerve is of Aut(K), the 2-group
of automorphisms of K, but that is, of course, the 2-group associated to the crossed module,
also denoted Aut(K) = (K,Aut(K), ι), that we have used so many times. Replacing Aut(K) by
an arbitrary 2-group, X (C), corresponding to a crossed module, C = (C,P, ∂), we now have two
different classifying space objects associated to it, the nerve of the associated 2-group in this ‘lax’
interpretation and our earlier one going via the nerve of the simplicial group (so the nerve of one of
the structures, the internal groupoid one), followed by using W̄ , (recall this from sections ?? and
??). We will return to a more detailed examination of this very shortly.

Another question that was left over from an earlier chapter, (page ??), was of the details of the
statement that a section, s, of the epimorphism

p : E → G

in our extension
E : 1→ K → E

p→ G→ 1,

gave a lax action of G on K. (Another useful link at this point is to our discussion of fibred
categories, for instance, in section ??. The themes there interact with some of what we will be
seeing here.) This is quite well known and is not that hard to provide in detail, so we will leave
you to do this, but the above discussion should ease the formalisation process. Given a section
s : G → E, you should construct a lax action in detail either as an explicit op-lax functor,
or as a simplicial map, perhaps by adapting earlier discussions and using the monadic resolution
approach from section 5.2.3, mixed with more recent comments about the relationship between
2-categories and S-categorical methods. The choice is yours and as usual, approaching it in at
least two ways can clarify relationships between the approaches. (The reference mentioned above
to Blanco, Bullejos, and Faro, [18], may once again help in this.)

This quite naturally, raises other questions - and again investigation is well worth it, and is left
to you. If we change from the section, s, to another, we clearly should get a lax natural trans-
formation between the weak actions and hence a homotopy between the corresponding simplicial
maps. (Again you are left to search for, and give, explicit expressions for these and to link them
all together into a description in terms of lax / pseudo functors, etc., the cohomology groupoid that
they give, and of the equivalence classes of non-Abelian extensions that we looked at in section ??.)

The important thing to note is how the different approaches interact and, in fact, intermesh,
as this is very useful when generalising and extending things to higher dimensions and to further
‘categorification’.

The end result of this investigation would be a version of the results on extensions of G by
K, in terms of the set, [Ner(G[1]), Ner(Aut(K))]∗, of (normalised) homotopy classes of pointed
simplicial maps. An interesting idea to follow up is to link this all up with observations on
‘extensions as bitorsors’ (page ??, but take care as the extension there uses different notation), the
use of classifying spaces in classifying bitorsors and in particular nerves of Aut(K), then back to
the first discussion of ‘lax actions’ in section ??.

5.6 Two nerves for 2-groups

We suggested in the previous section that we have more or less ‘by chance’ now got two different
ways of defining a nerve-like simplicial set for a 2-group, X (C), associated to a crossed module, C,
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and hence of assigning a ‘nerve’ to a crossed module. Discussion of this will take us right back to
the basics of crossed modules and so it warrants a section by itself. This will also allow more easy
reference to be made to the key ideas here.

We met, back in section ??, the classifying ‘space’ construction, and revisited it in section ??,
which took a crossed module or its associated 2-group, thought of it as an internal category within
the category of groups, constructed the (internal) nerve of that (internal) category internally
within Grps, so getting a simplicial group, the simplicial group nerve, K(C), of C. This was then
processed further using W , to get W (K(C)). This was analysed (on page ??) in the slightly more
general case when C is a reduced crossed complex. (Take care when reviewing those pages as the
S-groupoids are given for the algebraic composition convention.)

We also have the following chain of ideas. A 2-group, X (C), is a special type of 2-category and
any 2-category, as we have just seen, gives an S-category by taking the nerve of each ‘hom’. Of
course, then the natural thing to do, if we want a nerve, is to take the (homotopy coherent) nerve
of that S-category and, again of course, this is the geometric nerve of the 2-group. What does it
look like?

Before we do investigate this more fully, let us see, briefly, why it is important to do so.

The route to a nerve via W has important links to simplicial fibre bundle theory; W has the
Dwyer-Kan ‘loop groupoid’, (glance back at page ?? if need be), as a left adjoint and all the
mechanisms of twisted Cartesian products, twisting functions, etc., that we looked at in section ??
are there for use. The homotopy coherent nerve, on the other hand, opens the way to interpretations
of maps as homotopy coherent actions, to links with lax / op-lax / pseudo-category theory, and
thus quite directly into the methods of low dimensional non-Abelian cohomology.

We will see that the two nerves are very similar; in fact, they are isomorphic. This suggests
many lines of enquiry. Both constructions work for a general S-category, so there are possibilities
of links between their extensions to general S-groupoids, or to strict monoidal categories, since
they are one object 2-categories. These links have been, in part, investigated in papers by various
authors, in particular, Bullejos and Cegarra, [35] and [36], Blanco, Bullejos and Faro, [19] and
[18]. Some of these use, instead of W , a combination of the nerve on the group structure to get a
bisimplicial set, followed by using the diagonal of that ‘binerve’, a method related to what we saw
in section ??. The W -construction corresponds to taking the nerve in the ‘group direction’ followed
by using the Artin-Mazur codiagonal, ∇. We will look at this in some detail shortly (starting on
page ??). That the resulting constructions are weakly homotopically equivalent follows from the
results of Cegarra and Remedios, [39], who prove several results generalising some unpublished
work of Zisman.

Back to a detailed look at Ner(X (C)), we can, of course, just read its details off from our earlier
look at Ner(C) for C, a 2-category, together with the description of X (C) as a 2-category. Because
in this sort of calculation, it helps to have each facet ‘face-up on the table’, we will recall X (C)
first, although we have met it many times. (This is mostly important because of the risk of a mix
of conventions, for instance, on composition order.)

5.6.1 The 2-category, X (C)

• The 2-category, X (C), has a single object denoted ∗;
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• The set of 1-arrows, X (C)(∗, ∗)0, is the group, P with p1]0p2 = p1p2 as composition and we
picture it as

∗ p2→ ∗ p1→ ∗,

so will use functional composition order.

• the set of 2-arrows, X (C)(∗, ∗)1, is the group C o P . We have that, if (c, p) ∈ C o P , its
source is p and its target is ∂c.p. We picture it, in 2-category ‘imagery’, as

∗

p

$$

∂c.p

::
�� ��
�� (c,p) ∗ ,

and have a composition, ]1, within the category X (C)(∗, ∗), given by

(c′, ∂c.p)]1(c, p) = (c′c, p).

The other composition ]0, a ‘horizontal’ composition, is, as we know, the group multiplication
of C o P :

(c2, p2)]0(c1, p1) = (c2.
p2c1, p2p1),

(and the interchange law holds, being equivalent to the Peiffer identity).

5.6.2 The geometric nerve, Ner(X (C))

• The set of 0-simplices, Ner(X (C))0, is the set of objects, so is {∗}. (This nerve will, here, be
a reduced simplicial set. Of course, if C was a crossed module of groupoids, then Ner(X (C))0

would possibly have more elements.)

• The set of 1-simplices will be the set of arrows of X (C) and thus is P , as a set ;

• The 2-simplices of Ner(X (C)) consist of 4-tuples, x = (x(12), x(02), x(01);x(012)), as before,
where the x(ij) ∈ P and x(012) : x(02)⇒ x(12)x(01) is a 2-cell.

The faces of x are d0x = x(12), etc, as we saw before, so we will abbreviate x(12) to x0 ∈ P ,
etc. Writing x := x(012), we then have x is a 2-cell, x : x1 ⇒ x0]0x2, the codomain being
just x0.x2 in different notation, hence x has form (c, x1) with ∂c.x1 = x0.x2,

.
x0

  AAAAAAA

.
x1

//

x2
>>}}}}}}}

� �� �KS
x

.

and hence ∂c = x0x2x
−1
1 , which is clearly closely related to the form given, page ??, for the

W -based version of the classifying space, but we must check how good that similarity is in
detail and with consistent conventions).
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• The 3-simplices of Ner(X (C)) consist of sets of arrows,

{x(ij) | 0 ≤ i < j ≤ 3},

and 2-cells,

x(ijk) | 0 ≤ i < j < k ≤ 3},

with x(ijk) : x(ik)⇒ x(jk)x(ij), and satisfying a cocycle condition:

x(13)x(01)
x(123)]0x(01)+3 x(23)x(12)x(01)

x(03)

x(013)

KS

x(023)
+3 x(23)x(02)

x(23)]0x(012)

KS

commutes.

We again rethink this in terms of C and P , using the fact that d0x = (x(23), x(13), x(12);x(123) :
x(13)⇒ x(23)x(12)), and so on. The ith face is the term that omits i, as usual in these situ-
ations.

It is important to note at this point that between them the four faces contain all the x(ij)
and x(ijk), so completely determine x itself. This is, of course, related to the condition
that Ner(X (C)) is 3-coskeletal, but that condition just gives the similar result in higher
dimension. (Check back on the properties of that notion as given by Proposition ??.) This
observation says that there is a unique 3-simplex with these faces, not that if you start with
four 2-simplices seemingly of the right form then there will automatically exist a 3-simplex
with those 2-simplices as its faces, because the 3-cocycle condition intervenes.

Write the four 2-cells as c0, c1, c2, and c3, corresponding to d0x, etc., respectively, so that

– face (123): ∂c0 = x(23)x(12)x(13)−1;

– face (023): ∂c1 = x(23)x(02)x(03)−1;

– face (013): ∂c2 = x(13)x(01)x(03)−1;

– face (012): ∂c3 = x(12)x(01)x(02)−1.

To analyse the commutativity of the square above will require us to look first at the two
‘whiskered’ terms:

x(123)]0x(01) = (c0, x(13))]0(1, x(01)) = (c0, x(13)x(01)),

whilst

x(23)]0x(012) = (1, x(23))]0(c3, x(02)) = (x(23)c3, x(23)x(02)).

The ]1-compositions of 2-cells correspond to multiplication in C, so the two routes around
the square give

(x(123)]0x(01))]1x(013) = (c0, x(13)x(01))1(c2, x(03))

= (c0c2, x(03))
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and

(x(23)]0x(012))]1x(023) = (x(23)c3, x(23)x(02))]1(c1, x(03))

= (x(23)c3c1, x(03)).

We thus have a cocycle condition:

c0c2 = x(23)c3c1.

• Above dimension 3, everything is determined by dimension 3, as we saw that Ner(X (C)) is
3-coskeletal.

We next turn towards the construction going via the ‘internal nerve’ or ‘simplicial group nerve’.
By this route, we first construct a simplicial group, K(C), from C. As above we will repeat that
construction in great detail, so as to check consistency of conventions. The simplicial group, K(C),
is the internal nerve of the internal groupoid, X (C), and is constructed within the category of
groups. (The relevant earlier discussions are in sections ?? and ??.)

The simplicial group, K(C), has:

• group of 0-simplices, K(C)0 = P ;

• group of 1-simplices, K(C)1 = C o P , with, for (c1, p), a 1-simplex, d0(c1, p) = ∂c1.p,
d1(c1, p) = p and s0(p) = (1, p), for p ∈ P ;

• group of 2-simplices, K(C)2 = C o (C o P ), with, for (c2, c1, p), a 2-simplex

d0(c2, c1, p) = (c2, ∂c1.p),

d1(c2, c1, p) = (c2.c1, p),

d2(c2, c1, p) = (c1, p),

and degeneracies, s0(c1, p) = (1, c1, p), s1(c1, p) = (c1, 1, p).

It is useful to repeat the diagram for (c2, c1, p):

∂c1.p
(c2,∂c1.p)

%%KKKKKKKKK

p

(c1,p)
==|||||||||

(c2c1,p)
// ∂(c2c1).p

• for n ≥ 3, K(C)n = C o K(C)n−1, with action via the projection to P , and, if (c, p) :=
(cn, . . . , c1, p) is an n-simplex, the face morphisms are given by

d0(c, p) = (cn, . . . , c2, ∂c1.p),

di(c, p) = (cn, . . . , ci+1.ci, . . . , p) for 0 < i < n,

dn(c, p) = (cn−1, . . . , c1, p),

whilst the degeneracy maps insert an identity.
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5.6.3 W (H) in functional composition notation

We have been operating under the assumption that to hope to obtain fairly simple formulae in
cocycles, nerves, etc., it may be a good idea to stick with consistent conventions, so using left
actions, function composition order, and so on. This has sometimes worked! It does mean checking
through to see that a given formula is consistent with the convention and that can be tedious!
Does it matter? The answer is ‘sometimes’. The mathematical essence of the argument is fully
independent of the notation, but that means that a twisted arcane obscure formula may really
represent something simple, and be equivalent to a much simpler transparent one, or it may really
reflect some great twisted arcane mathematical form that is impossible to unravel further.

For the W -construction, we have two or three levels of structure and the order of ‘composition’
being used is not always in evidence, so giving a consistent convention is quite tricky.

The classifying space of a group is given by the nerve of the corresponding groupoid or, if you
prefer, the geometric realisation of that simplicial set. The W -construction gives a classifying space
for a simplicial group (or, more generally, any S-groupoid or small S-category). It is a generalisation
of the nerve construction. It can also be derived from the nerve, since, applying the nerve functor
to each dimension of a simplicial group gives a bisimplicial set and, as we have mentioned earlier,
one can process such an object either using the diagonal functor (as we did in section ??, page ??)
or, using the Artin-Mazur codiagonal that we will meet more formally in the near future (section
??, page ??).

If G is a groupoid, we can represent an n-simplex of Ner(G) by a diagram

x0
g1→ x1

g2→ . . .
gn→ xn,

where t(gi) = s(gi+1), and, in ‘functional’ order, by an n-tuple g = (gn, . . . , g1) with d0g =

(gn, . . . , g2), etc. In the W -construction, we look at an S-groupoid, H, and take ‘composable’
strings, h = (hn, . . . , h1), in a similar way, but with hi ∈ Hi−1.

In case you think that we need hi ∈ Hi, it is worth pausing to discuss the indexing. In a group,
G, thought of as the groupoid, G[1], the nerve is a reduced simplicial set, i.e., Ner(G)0 has just
one element, and Ner(G)1 is G itself, but the arrows in G[1], as a simplicially enriched groupoid,
are thought of as being in dimension 0, so the dimension drops by 1. This sort of conflict of ‘rival’
indexation ideas is quite usual, quite confusing and quite irritating, but it is also quite easy to
accept and to work with. Remember that W behaves as if it were a ‘suspension’ operation, whilst
its left adjoint, G, behaves like a ‘loops on -’ construction, so we should expect shifts in ‘geometric’
dimension.

The problem is ‘what should the face convention be?’ If we look at d0 and define it just to
delete the h1 position, then we get an invalid string, as the dimensions are wrong. The nth face
would work alright as that would delete hn and the resulting string would still be valid. To get
around the d0 problem, we will adopt a definition that (i) is simple, (ii) works and, in fact, (iii)
has a neat interpretation, when applied to objects such as K(C). In addition, it seems to be the
codiagonal of the bisimplicial nerve construction, but we cannot look at that aspect in detail at the
moment, as we do not yet have enough detailed information on the codiagonal.

What is this marvellous convention, ...?

We take H to be an S-groupoid, as usual, with object set, O, say:

• W (H)0 is the set, O, of objects of H;
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• W (H)1 is the set of arrows of the groupoid, H0;
and, in general,

• W (H)n is the set of all ‘composable’ strings, h = (hn, . . . , h1), with hi ∈ Hi−1, and (for
‘composable’) t(hi) = s(hi+1) for 0 < i < n.

The face maps are given by:

• d0(h) = (d0hn, . . . , d0h2);

• di(h) = (dihn, . . . , dihi+1.hi, . . . , h1) for 0 < i < n;

• dn(h) = (hn−1, . . . , h1).

The degeneracy maps are given by inserting an identity in the appropriate place and using the
degeneracies of H to push earlier elements of the string up one dimensions:

• si(h) = (si(hn), . . . , si(hi+1), idxi , hi, . . . , h1).

(Of course, you are left to check that this works and gives a simplicial set, etc.)

There are some obvious questions to ask:

• Does this given an isomorphic version of W (H)? Possibly not, as it looks more like a conjugate
version of the more standard form. It clearly has the same sort of properties, e.g., being a classifying
space for H, classifying principal H-bundles if H is a simplicial group, etc., and has a geometric
realisation that is homeomorphic to the standard form.

• Is it easy to visualise the n-simplices? Yes, at least in the case H = K(C), and more generally
for any 2-groupoid considered as a S-groupoid. In fact, it works for a 2-category as well:

5.6.4 Visualising W (K(C))

First let us see what the ‘bottom end’ of W (K(C)) looks like.

• W (K(C))0 is a point (as we have C is a crossed module of groups);

• W (K(C))1 is isomorphic to the set, P , as a 1-simplex in W (K(C)) is an ‘arrow’, i.e., an
element in K(C))0, which is the group P ;

• A 2-simplex of W (K(C)) consists of a pair (h2, h1) with hi ∈ K(C)i−1, so h2 ∈ CoP , h1 ∈ P .

In 2-categorical from, this can be thought of as h being

h1 // ##;;� �� �KS
h2

and then d0(h) deletes h1, as we want, and takes d0(h2) as data from h2; at the other ‘extreme’,
d2(h) just gives us

h1 //

and, in between, d1(h) takes the start of the 2-cell and composes it with h1 to get d1(h2).h1.
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It is sometimes useful to draw this as a ‘staircase’ diagram:

d0h2 //
=

OO

h1
//
d1h2

//
=

OO

h2 =

OO

and we will see this ‘come into its own’ importance later when looking at codiagonals.
• The 3-simplices, h = (h3, h2, h1) with, again, hi ∈ K(C)i−1, have similar pictures. Remember

h3 is a composable pair of 2-cells, as on the right hand end:

h1 // ##;;� �� �KS
a

��
� �� �KS
c

@@
� �� �KS
b

//

and the staircase, obtained by expanding out the 2-cells:

//
=

OO

// //
=

OO
=

OO

// //
=

OO

//
=

OO
=

OO

The staircase shows more clearly the face maps. The d0 deletes the bottom row completely; d1

removes the 1st row and 1st column of vertices and composes, where possible, to give

//
=

OO

d1a]0h1
// //

=

OO

c]1b =

OO

d2 removes the 2nd row and column and composes:

//
=

OO

h1
// //

=

OO

b]0a =

OO

and d3 deletes the right hand column (and thus the top row as well).
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If we go one step further down in the notation, i.e., back to the elements of C and P , then we
have h ∈W (K(C))2 has form

h = ((c2,1, p2), p1)

with h2 = (c2,1, p2) ∈ C o P , and so on. The picture of h is then

d0(h) = ∂c2,1.p2

d1(h) = p2.p1

d2(h) = p1

giving
.

∂c2,1.p2

  AAAAAAA

.
p2.p1

(h2,h1)
//

p1
>>}}}}}}} .

If we match that picture with the earlier one (page 187), then

x0 ↔ ∂c2,1.p2

x1 ↔ p2.p1

x2 ↔ p1

and, given h, we get the geometric nerve 2-simplex,

(p1, p2.p1, ∂c2,1.p2; (c2,1, p2.p1)).

Working the other way around, given (x2, x1, x0; (c, x1)), gives a W -based 2-simplex

((c, x1x
−1
2 ), x2),

and the faces match up. (Check this all works - both ways - and do not forget the ‘cocycle’
conditions relating the xis.) This looks good. On to dimension 3, . . ..

If we start with h = (h3, h2, h1), where

h1 = p1

h2 = (c2,1, p2)

h3 = (c3,2, c3,1, p3),

we get

d0(h) = ((c3,2, ∂c3,1.p3), (∂c2,1.p2)),

d1(h) = ((c3,2.c3,1, p3), p2.p1),

d2(h) = ((c3,1.
p3c2,1, p3p2), p1),

d3(h) = ((c2,1, p2), p1),

and now note that given these four faces, we can reconstruct h completely, since d3(h) gives us h2

and h1, and we can use projections onto semi-direct factors of C o (C o P ) to retrieve h3 with no
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bother. This means that there is a unique h with this shell - the same phenomenon that we saw
with Ner(X (C)). The isomorphism that we found in levels 0, 1 and 2 can therefore be extended
to dimension 3 . . . , and above by the fact that we have 3-coskeletal simplicial sets here. (We have
not actually explicitly checked that W (K(C)) is 3-coskeletal, but the above calculation linked in
with our earlier work (page ??) should enable you to prove this.) We have

Proposition 47 The two classifying spaces, Ner(X (C)) and W (K(C)), are naturally isomorphic.
�

This result suggests several questions, some of which we will look at shortly, others are left to
you.

• If C and D are two crossed modules, can we interpret, algebraically, an op-lax morphism
between the corresponding 2-groups, since we know that these correspond to simplicial morphisms
between the corresponding nerves? This would give a sort of ‘weak’ morphism between the crossed
modules.

• Can we extend the above isomorphism to the case where we have 2-categories rather than
2-groupoids? This would look unlikely, since we had to use inverses to check the isomorphism,
but perhaps some weaker relationship is possible, cf., for instance, Bullejos and Cegarra, [35]. One
important consequence of this is a way of comparing the two obvious ways of assigning a classifying
space to a strict monoidal category. A monoidal category ‘is’ a one object bicategory, and a strict
one thus corresponds to a one object 2-category. (We will look at monoidal categories is slightly
more detail in a coming chapter.) The classical classifying space construction, used by Segal,
[115, 116], corresponds to taking the nerve of the category structure and then that of the monoid
structure and forming a simplicial set from the resulting bicomplex. The resulting space has a lot
of beautiful properties, but we will not go into them here. The relevant papers directly on the
comparison between this classical nerve and classifying space and that defined using the homotopy
coherent nerve are by Bullejos and Cegarra, [35, 35]. One important point to note is that the
Duskin geometric nerve construction which they use is also applicable to bicategories, so some of
their results apply also to non-strict monoidal categories.

• Can we find a way of adapting the above proposition to handle some sort of 3-category or
3-groupoid? Perhaps starting with a 2-crossed module, we could form W of the corresponding
simplicial group, since that is easy, but can we construct the h.c. nerve of such a simplicial group?

More generally:

• If we think of an S-groupoid, G, as an S-category, what is the geometric (h.c.) nerve of that
S-category?

5.7 Pseudo-functors between 2-groups

We will look in some detail at the first of these questions.

As crossed modules give rise to 2-groups (or, more generally, 2-groupoids) and these are 2-
categories, it is natural to ask what the lax or op-lax functors between two such 2-groups look
like. This can be considered both as a good illustrative example of (op-)lax functors and thus
of homotopy coherence, and also as an important part of the theory of crossed modules that we
have yet to explore. We will start with a basic observation and that is that, as 2-groupoids have
invertible 1 and 2 arrows, there is no essential difference between lax and op-lax functors and they
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are both ‘the same as’ pseudo-functors. Of course, one has to choose a direction for the 2-cells and
we will consider ’pseudo = op-lax + invertible’, i.e., the structural 2-cells of a pseudo-functor will
go from F (ab) to F (a)F (b). These pseudo-functors will be normal ones as usual.

To start with, our study will look at pseudo-functors between two 2-groups, X (C) and X (C′),
where C = (C,P, ∂) and C′ = (C ′, P ′, ∂′), and by analysing them at the level of the groups and
actions involved. Later we will examine them at the level of simplicial groups. (As usual the
extension to S-groupoids is reasonable easy to do, so will be left to you.)

(The material in this section is treated, in part, by Noohi in [106, 107] (and the correction
avaialable as [108]) and with Aldrovandi, [2], for a sheafified version with applications to stacks.
There is also a strong link with the Moerdijk-Svensson model category structure on 2-groups, for
which see [100] as well as with the papers referred to in the previous section.)

5.7.1 Weak maps between crossed modules

Effectively a weak map between crossed modules is what is ’seen’, at the level of crossed modules, of
a pseudo-functor between the corresponding 2-groups. The abstract definition as given by Noohi,
[106] is:

Definition: Let C and C′ be crossed modules, as above. A weak map, f : C → C′, is a
pseudo-functor from X (C) to X (C′).

That probably does not say that much to you about what such a thing looks lie, so we are going
to take the definition apart in various ways so as to get some feel for them.

We first use a direct attack. Consider a normal pseudo-functor:

F : X (C)→ X (C′),

then this consists of

• a set map, F0, on objects (this is ’no big deal’ as both X (C) and X (C′) have exactly one
object);

• a set map, F1, sending arrows to arrows, so giving a function,

f0 : P → P ′,

which is not necessarily a homomorphism of groups. The obstruction to it being one is given
by

• a set map, ϕ : P × P → C ′ o P ′, so, if p2, p1 ∈ P , ϕ(p2, p1) is a 2-cell from f0(p2p1) to
f0(p2)f0(p1);

• a functor
F2 : C o P

�� ��

// C ′ o P ′

�� ��
P

OO

// P ′

OO

between the underlying categories, with f0 at the level of objects. (Importantly, note that this
does not mean that this functor preserves horizontal composition, i.e., group multiplication,
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in either the top or the object levels. This is just F2 = F∗,∗ : X (C)(∗, ∗) → X (C′)(∗, ∗), as a
functor between the corresponding ‘hom-categories’.)

Of course, we will have to give some equations and conditions on these, but will explore this
little-by-little before giving a résumé of the resulting structure.

First we note that, as we have a normalised pseudo-functor, f0(1) = 1 and ϕ(1, 1) = 1. As F2

is a functor, we have, for (c, p) ∈ C o P ,

F2(c, p) : f0(p)→ f0(∂c.p),

but this means that F2(c, p) has the form,

F2(c, p) = (F ′2(c, p), f0(p)),

for some function F ′2 : C o P → C ′. We will set f1(c) = F ′2(c, 1) and note that ∂f1(c) = f0(∂c).

It will eventually turn out that f1 is almost a group homomorphism and that from f1 and ϕ,
we will be able to calculate F ′2(c, p) for a general p ∈ P , that is to say, the information needed for
F2 reduces to that for f1 and ϕ and, from them, we can reconstruct F2 itself.

We also have that ϕ(p2, p1) is a 2-cell from f0(p2p1) to f0(p2)f0(p1). It therefore has the form

ϕ(p2, p1) = (〈p2, p1〉, f0(p2p1))

for some ‘pairing function’,

〈 , 〉ϕ : P × P → C ′.

(We will usually write 〈 , 〉 instead 〈 , 〉ϕ if no confusion is likely.) We need ϕ to be ‘natural’
with respect to pre- and post- whiskering and so will have corresponding conditions on 〈 , 〉.
We first note that, since the target of ϕ(p2, p1) is f0(p2)f0(p1), we have

Lemma 34 (Target condition) For any p1, p2 ∈ P ,

∂〈p2, p1〉 = f0(p2)f0(p1)f0(p2p1)−1.

�

The ‘associativity’ axiom for ϕ gives a cocycle condition:

for p1, p2, p3 ∈ P , the diagram, in X (C′)

f0(p3p2p1)
ϕ(p3p2,p1) //

ϕ(p3,p2p1)
��

f0(p3p2)f0(p1)

ϕ(p2,p1)]0f0(p1)
��

f0(p3)f0(p2p1)
f0(p3)]0ϕ(p2,p1)

// f0(p3)f0(p2)f0(p1)

is commutative.

Interpreting this at the crossed module level:
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Lemma 35 (Cocycle condition) For any p1, p2, p3 ∈ P ,

〈p3, p2〉〈p3p2, p1〉 = f0(p3)〈p2, p1〉〈p3, p2p1〉.

�

The proof is straightforward. We note that we really do use the formulae for pre- and post-
whiskering in terms of the group multiplication. This is just the multiplication on the right or left
of (c, p) by some (1, p′):

Pre-whisker: (c, p)]0(1, p′) = (c, pp′);
Post-whisker: (1, p′)]0(c, p) = (p

′
c, p′p).

As we are considering normalised op-lax and pseudo- functors, we have ϕ(1, 1) = 1, so 〈1, 1〉 = 1
as well, but we can use this together with the cocycle condition to get:

Corollary 10 For any p ∈ P , 〈1, p〉 and 〈p, 1〉 are both 1C′.

Proof: Taking p2 = p, p3 = 1 and p1 = p−1 gives

〈1, p〉〈p, p−1〉 = f0(1)〈p, p−1〉〈1, 1〉,

so, as f0(1) = 1 and 〈1, 1〉 = 1, we have 〈1, p〉 = 1.
Similarly, try p1 = 1, p2 = p and p3 = p−1. �

Remark: It will probably not have escaped your notice that what we have here is very closely
related to a weak action of P on C ′. This will become more apparent slightly later on.

We next look at the naturality of ϕ.
If we fix p ∈ P , we get the pre-whiskering

−]0p : X (C)(∗, ∗)→ X (C)(∗, ∗),

and the corresponding post-whiskering

p]0− : X (C)(∗, ∗)→ X (C)(∗, ∗).

Naturality of ϕ means that pre- (resp. post-) whiskering in X (C) is translated into the similar
operation in X (C′).

Pre-whiskering naturality: For any p1, p2 ∈ P and c ∈ C, the diagram

f0(p2p1)
ϕp2,p1//

F2(c,p2p1)
��

f0(p2)f0(p1)

F2(c,p2)]0f0(p1)
��

f0(p′2p1) ϕp′2,p1

// f0(p′2)f0(p1)

in X (C′) commutes, where p′2 = ∂c.p2.
Using F ′2 and 〈−,−〉, this translates as
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Lemma 36 (Primitive pre-whiskering condition.) For p1, p2 ∈ P and c ∈ C,

〈∂c.p2, p1〉.F ′2(c, p2p1) = F ′2(c, p2).〈p2, p1〉.

�

We call it ‘primitive’ as we really want it in terms of f1 not of F ′2.

Post-whiskering naturality: For any p2, p3 ∈ P and c ∈ C, the diagram

f0(p3p2)
ϕp3,p2//

F2(p3c,p3p2)
��

f0(p3)f0(p2)

f0(p3)]0F2(c,p2)
��

f0(p′3p2) ϕp3,p′2

// f0(p3)f0(p′2)

in X (C′) commutes, where p′2 = ∂c.p2.

Using F ′2 and 〈−,−〉, this translates as

Lemma 37 (Primitive post-whiskering condition.) For p2, p3 ∈ P and c ∈ C,

〈p3, ∂c.p2〉.F ′2(p3c, p3p2) = f(p3)F ′2(c, p2).〈p3, p2〉.

�

Recall that we wrote f1(c) for F ′2(c, 1). Using naturality, and from the fact that an arbitrary (c, p)
can be written as (c, 1)]0(1, p), we can derive a rule expressing F ′2(c, p) in terms of f1(c) and 〈−,−〉:

Lemma 38 For any c, p, as above,

F ′2(c, p) = 〈∂c, p〉−1f1(c).

Proof: Pre-whiskering naturality gives

〈∂c, p〉.F ′2(c, p) = F ′2(c, 1).〈1, p〉,

but we showed that 〈1, p〉 is the identity, so the result follows. �

Of course, as F2 is a functor, we also know that f1(1) = 1.

It is thus possible to define F2(c, p) in terms of the pairing function 〈−,−〉 together with f0 and
f1. Of course, we need to be sure that F2, thus (re-)constructed, has the right properties, mainly as
a check that the whole framework holds together, and that we have successfully reduced the data
specifying F to a usefully presented description. For instance, F2(c, p) is to be a 2-cell from f0(p)
to f0(∂c.p), i.e., we must have:

Lemma 39 Thus defined, F ′2(c, p) satisfies f0(∂c.p) = ∂F ′2(c, p).f0(p).



5.7. PSEUDO-FUNCTORS BETWEEN 2-GROUPS 199

Proof: (Included really only because it is quite neat. It could have been left to you.)

∂F ′2(c, p) = ∂〈∂c, p〉−1∂f1(c),

but we know ∂f1(c) = f0(∂c). We obtain

∂〈∂c, p〉 = f0(∂c)f0(p)f0(∂c.p)−1,

and hence
∂〈∂c, p〉−1 = f0(∂c.p)f0(p)−1f0(∂c)−1,

so
∂F ′2(c, p) = f0(∂c.p)f0(p)−1,

or
f0(∂c.p) = ∂F ′2(c, p).f0(p),

as required. �

Proposition 48 Pre-whiskering naturality: For p1, p2 ∈ P and c ∈ C,

f0(∂c)〈p2, p1〉.f1(c) = f1(c).〈p2, p1〉.

Proof: By calculation after substituting: on substituting 〈∂c, p〉−1f1(c) for F ′2(c, p), etc., the
primitive version gives

〈∂c.p2, p1〉.〈∂c, p2.p1〉−1f1(c) = 〈∂c, p2〉−1f1(c)〈p2, p1〉.

By the associativity cocycle condition,

〈∂c.p2, p1〉.〈∂c, p2.p1〉−1 = 〈∂c, p2〉−1f0(∂c)〈p2, p1〉.

Cancellation of 〈c, p2〉−1 in the combined expression gives the result. �

Remark: Rearranging the above equation gives

∂f1(c)〈p2, p1〉 = f1(c)〈p2, p1〉f1(c)−1,

which is related to the Peiffer identity,

∂cc′ = c.c′c−1,

within C ′ and could have been deduced directly from it.

Back again, this time to Post-Whiskering Naturality, we had

〈p3, ∂c.p2〉.F ′2(p3c, p3p2) = f(p3)F ′2(c, p2).〈p3, p2〉,

and hence

〈p3, ∂c.p2〉.〈p3∂c.p
−1
3 , p3p2〉−1f1(p3c) = f0(p3)〈∂c, p2〉−1f0(p3)f1(c).〈p3, p2〉.

Using the ‘associativity’ cocycle condition gives an expression for the first part of the right hand
side as

f0(p3)〈∂c, p2〉 = 〈p3, ∂c〉〈p3.∂c, p2〉〈p3, ∂c.p2〉−1,

so we get, after an easy rearrangement:
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Proposition 49 Post-whiskering naturality: For p2, p3 ∈ P and c ∈ C,

〈p3.∂c.p
−1
3 , p3p2〉−1f1(p3c) = 〈p3.∂c, p2〉−1〈p3, ∂c〉−1f0(p3)f1(c).〈p3, p2〉.

�

Remarks: (i) This formula, or rather the right action / algebraic composition order form of it,
is ascribed to Ettore Aldrovandi in the corrected version of Noohi’s notes, [108]. It is worth noting
that Noohi uses right actions and a lax functor formulation, so, for instance,

ϕ : F (b)F (a)⇒ F (ba).

This results in there being no inverse on the pairing brackets, amongst other things.
(ii) If we consider the case p3 = p−1

2 = p, say, then we get

f1(pc) = 〈p.∂c, p−1〉−1〈p, ∂c〉−1f0(p)f1(c)〈p, p−1〉,

which is a form of Noohi’s ‘equivariance condition’, cf. [108].

We can use similar arguments to these above to investigate f1 further.

Proposition 50 The map f1 : C → C ′ satisfies: for all c2, c1 ∈ C,

f1(c2c1) = 〈∂c2, ∂c1〉−1f1(c2)f1(c1).

Proof: Using the definition of f1,

(f1(c2c1), 1) = (F2(c2c1, 1)

= F2(c2, ∂c1)F2(c1, 1)

= (〈∂c2, ∂c1〉−1f1(c2), ∂c1)]1(f1(c1), 1)

= (〈∂c2, ∂c1〉−1f1(c2)f1(c1), 1)

as required. �

We thus have that f1 is almost a homomorphism. It is ‘deformed’ by the term 〈∂c2, ∂c1〉.

We could, as might be expected, derive this also from a combination of pre- and post-whiskering
and the interchange law. As the interchange law holds in both X (C) and X (C′), and as F2 is a
functor, it must relate these two, preserving ‘interchange’.

Suppose we have
α : p1 ⇒ p′1,

β : p2 ⇒ p′2,

then we have a diagram,

f0(p2p1))
F (β]0α) +3

ϕp2,p1
��

f0(p′2p
′
1)

ϕp′2,p
′
1

��
f0(p2)f0(p1)

F (β)]0F (α)
+3 f0(p′2)f0(p′1)

which will commute in X (C′).
We can translate this, as before, in terms of 〈−,−〉, f0 and f1.
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Proposition 51 For α = (c1, p1) and β = (c2, p2),

〈∂c2.p2, ∂c1〉〈∂c2.p2∂c1p
−1
2 , p2p1〉−1f1(c2

p2c1) = 〈∂c2, p2〉−1f1(c2)f0(p1)〈∂c1, p1〉−1.f0(p1)f1(c1)〈p2, p1〉.

�

We leave the proof to you. The resulting formula reduces to the pre- and post- forms for
suitable choices of the variables. In turn, it can be derived by algebraic manipulation from those
forms together with the formula for f1(c2c1) in terms of f1(c2) and f1(c1). The added complexity
of the interchange form makes its use less attractive than that of the reduced forms.

Analysing pseudo-functors between 2-groups has thus led us to a list of structure and related
properties that we can extract to get the following algebraic form of the definition. As usual, C
and C′ are two crossed modules.

Definition: Weak map, algebraic form: A weak map, f : C→ C′, is given by the following
structure:

• a function, f0 : P → P ′;

• a function, f1 : C → C ′;

• a pairing, 〈 , 〉 : P × P → C ′.

These are to satisfy:

W1 (Normalisation): f0(1) = 1 and 〈1, 1〉 = 1;

W2 (‘Almost a homomorphism’ for f1): for c2, c1 ∈ C,

f1(c2c1) = 〈∂c2, ∂c1〉−1f1(c2)f1(c1);

W3 (‘Almost a homomorphism’ for f0): for p1, p2 ∈ P ,

f0(p2p1) = ∂〈p2, p1〉−1f0(p2)f0(p1);

W4 (Cocycle): for p1, p2, p3 ∈ P ,

〈p3, p2〉.〈p3p2, p1〉 = f0(p3)〈p2, p1〉.〈p3, p2p1〉;

W5 (Whiskering conditions):

Pre: for p1, p2 ∈ P and c ∈ C,

f0(∂c)〈p2, p1〉.f1(c) = f1(c).〈p2, p1〉;

Post: for p2, p3 ∈ P and c ∈ C,

〈p3.∂c.p
−1
3 , p3p2〉−1f1(p3c) = 〈p3.∂c, p2〉−1〈p3, ∂c〉−1f0(p3)f1(c).〈p3, p2〉.

We then have:
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Theorem 11 (Noohi, [108]) The two definitions of weak map, pseudo-functorial and algebraic, are
equivalent. �

Remarks: (i) The proof in one direction has been sketched out above, and some indication
has been given as to how to go in the other direction. The details of that direction are a ‘good
exercise for the reader’.

(ii) In the published form (that is in [107]), the additional assumption that f1 was a homomor-
phism was made. This is not a consequence of the pseudo-functorial definition of a weak map. A
correction was made available by Noohi, in [108], where the axioms are given in more or less the
above form with, however, right actions, etc.

(iii) It should be noted that we have not encoded weak / pseudo- natural transformations in the
above. In [108], there is a description of such things within the context of the algebraic definition
of weak maps as above. The task of translating that to the notational conventions used here is left
to you.

(iv) Any morphism of crossed modules gives a weak map between them, with a trivial pairing
function, and any weak map with trivial pairing likewise is a morphism of crossed modules. With
morphisms of crossed modules composition is very easy to do, so what about composition of weak
maps? This is again left as an exercise for you to investigate. We will shortly see the simplicial
description of weak maps and in that description composition is just composition of simplicial
maps, so is easy. As a consequence, as yet, no use for a composition formula in the algebraic form
of the definition seems to have been found and we will not discuss it further, except to point out
that to investigate it yourself can be a useful exercise in linking the 2-group(oid) way of thinking
to the crossed module way.

(v) The above algebraic definition is not intended to be in a neatest form. Some of the conditions
may be redundant, for instance. The list is inspired both by Noohi’s notes, and the form given
there, but also by the interpretation of each condition in terms of the pseudo-functorial one.

We observed earlier the similarity between the rules for a weak map, f : C→ C′, and those for a
weak action. To clarify this a bit further, note that if C = (1, P, 1) is ‘really a group’, then a weak
map, f : C → C′, consists just of f0 and ϕ, as the only value f1(c) can take is 1 corresponding to
c = 1! It is a normalised pseudo-functor from P [1] to X (C′).

A weak action of P on P ′ would be a pseudo-functor from P [1] to Aut(P ′). The only difference
between the two notions is to replace the automorphism 2-group, Aut(P ′) by the general 2-group,
X (C′). A weak action of P on P ′ can thus be thought of as a weak map from P to Aut(P ′), (with
allowance being made for a deliberate confusion between the 2-group of automorphisms of P ′ and
the corresponding crossed module).

A natural generalisation of weak action of a group is thus a weak action of a crossed module, C,
which can be defined to be an op-lax functor from X (C) to whatever 2-category you like. Equally
well, you can make C act weakly on some object in a simplicially enriched setting by using an
S-functor from the corresponding simplicial group.

Finally we note the following very interesting and useful result.

Weak maps induce morphisms on homotopy groups.

More precisely,
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Proposition 52 Suppose that f : C → D is a weak map of crossed modules, then f induces mor-
phisms

πi(f) : πi(C)→ πi(D)

for i = 0, 1.

Proof: There are several different proofs of this. Starting from the algebraic description, we
have that f0 induces a homomorphism from P/∂C to P ′/∂C ′. (This looks to be ‘immediate’ from
condition W3, but, of course, you do have to check that the apparently induced morphism is
‘well-defined’. This is easy since f0(∂c) = ∂f1(c).) That handles the i = 0 case.

Suppose next that c ∈ Ker ∂, then clearly f1(c) ∈ Ker ∂′. Is the resulting induced mapping a
homomorphism? Of course, this follows from W2, and we are finished. �

There are also easy proofs of this coming from the simplicial description, as we will see.

We have already commented on the link between weak actions and maps between nerves /
classifying spaces, and also on the links between extensions, sections and weak actions. We will
shortly explore the extension of these links to give us more insight into weak maps.

5.7.2 The simplicial description

Suppose C and D are two crossed modules and f : C → D a weak map between them in the sense
of the definition on page 195. We will rewrite this in a more ‘pseudo-functorial’ form as a pseudo-
functor, F = (F, γ) : X (C)→ X (D), between the corresponding 2-groupoids. By the properties of
the nerve construction that we saw earlier in Proposition 44, there is equivalently a simplicial map,

f : Ner(X (C))→ Ner(X (D)).

In this description, composition of weak maps is no problem, just compose the corresponding
simplicial maps. Using the natural isomorphism from Proposition 47, from such an f , we get a
corresponding morphism of (reduced) simplicial sets,

f : W (K(C))→W (K(D)),

and, by the adjunction between W and the loop groupoid functor, G, (mentioned back in section
??, page ??), we get a morphism of simplicial groups,

f : GW (K(C))→ K(D).

The simplicial group, K(D), has a Moore complex of length 1, so f factors via a quotient of
G := GW (K(C)), giving K of the crossed module M(G, 1), i.e., the Moore complex of this quotient
will be the crossed module:

∂ :
NG1

d0(NG2)
→ G0.

As G is a free simplicial group, this will have G0 a free group.
There is a morphism, G → K(C), corresponding to the identity morphism from W (K(C)) to

itself, so this is the counit of the adjunction and is a weak equivalence of simplicial groups, i.e., it
induces isomorphisms on all homotopy groups. We thus get a span

K(C)
εK(C)←− G −→ K(D),
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or, passing to crossed modules,
C←M(G, 1)→ D.

We know that the left hand part of the span is a weak equivalence of crossed modules in the
sense of section 3.1 (or of simplicial groups, if we go back a line or two), so what really is this G?
It was formed from W (K(C)) by applying the loop groupoid functor, G, which is left adjoint to W
and, as we said above, the natural map, GW → Id is the counit of that adjunction. The results that
we mentioned earlier (due to Dwyer and Kan, [59], or originally, as we really are only looking at
the reduced case, to Kan, [82]) include that this is a weak equivalence, i.e., it induces isomorphisms
on all homotopy groups. (Look up the theory in Goerss and Jardine, [66], for example, if you need
more detail.)

This observation gives us a second proof of the result from page 203.

Proposition 53 (Simplicial version of Proposition 52) Suppose that f : C → D is a weak map of
crossed modules, then f induces morphisms,

πi(f) : πi(C)→ πi(D),

for i = 0, 1.

Simplicial Proof: We consider f as the span,

C←M(G, 1)→ D.

Now applying πi, we get

πi(C)
∼=← πi(M(G, 1))→ πi(D),

but the left hand side is a natural isomorphism, and the induced morphism is the composite of
that isomorphism’s inverse followed by the induced morphism coming from the right hand branch
of the span. �

We still need to describe G in any detail, and to do this we need to revisit the loop groupoid
functor, G(−), and, as we have used the conjugate W , we must take its conjugate, i.e., the functional
composition order version of that construction.

5.7.3 The conjugate loop groupoid

It will be convenient to present the conjugate version of the Dwyer-Kan loop groupoid, that is the
one that corresponds to the functional composition order and to the form of W that we have just
seen, above page 190. The precise description, once we have it, will have an obvious relation with
the more standard form that we have seen earlier (page ??), but we will take the opportunity to
explore a little why this works and so will pretend to forget that we have seen the other form.

We suppose given a simplicial map, f : K → WH for H an S-groupoid, where we take W in
the ‘functional’ form above, (page 190). We want to construct an ‘adjoint map’, f : G(K) → H,
but as yet do not have an explicit description of G.

We have G(K) will be some S-groupoid on the object set, K0, and f on objects will just be
f0 (on vertices). We know G(K)0 will be some groupoid and f , on an arrow g : x → y, must be
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determined by f1 on K1, so the obvious solution is that G(K)0 will be the free groupoid on the
non-degenerate 1-simplices. (We must put s0(x) = idx, for x ∈ K0. That is needed to get identities
to work correctly - for you to investigate.) We will use functional composition order in G(K)0,
of course.

Defining, for x ∈ K0, x to denote the corresponding object of G(K), then, for k ∈ K1, we will
extend the overline notation and write k : d1k → d0k for the corresponding generator of G(K)0

and then f(k)0 : f0d1(k) → f0d0(k) in H0, will be given by f1(k). (Freeness of G(K)0 guarantees
that this f0 exists and is unique with the correct universal property.)

The fun starts in dimension 1. Suppose now k ∈ K1, then

f2(k) = (h2, h1) ∈W (H)2,

and we will write h2 = h2(k), h1 = h1(k), as these simplices clearly depend on the input k. We
have hi(k) ∈ Hi−1 and s(h2(k)) = t(h1(k)).

We need a groupoid, G(K)1 with K0 as its set of objects, and a map f1 : G(K)1 → H1. (We
expect ‘freeness’ as we have a left adjoint - but free on what? There are several choices to try
and several of them work, since we are in a groupoid and, to some extent, we are making a choice
of generators, so conjugate generators might also give a valid choice and an isomorphic G(K)1.)
Writing k for the generator corresponding to k ∈ K2, we do not know what the source and target
of k should be. Clearly they have to be amongst its vertices! Which ones? There are three of them!

Rather than choose the obvious one with source being the vertex of k corresponding to 0 (i.e.,
d1d2(k)) and target being that corresponding to 2 (so d0d0(k)), we will look at f and see if there
are advantages with any other choice. Looking at f(k)1, it has to be in H1 and we already have an
element of that groupoid namely h2(k). This suggests that we try defining f(k)1 to be h2(k) and
see what that implies for k itself.

We have

f(d0(k)) = d0(f(k)) = (d0h2(k)),

f(d1(k)) = d1(f(k)) = (d1h2(k).h1(k)),

f(d2(k)) = d2(f(k)) = (h1(k)),

and, if we take
f1(k) = h2(k),

then

d0f1(k) = d0h2(k) = f(d0(k)),

d1f1(k) = d1h2(k) = f(d1(k)).f(d2(k))−1,

so as to cancel the h1(k) term. This suggests that we define d0(k) = d0(k), but d1(k) = d1(k)(d2(k))−1.
This corresponds to the source of k being the target of d2(k), that is the object d0d2(k) = d1d0(k),
whilst the target of k would be the same as that of d0(k), namely the object d0d0(k).

Those are the natural choices for that choice of f1. To summarise

• if k ∈ K2, s(k) = d1d0(k), t(k) = d
(2)
0 (k), whilst

– d0(k) = d0(k),

– d1(k) = d1(k)(d2(k))−1,
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and it works.

We define si(k) = si(k) for 0 ≤ i ≤ n − 1 and set sn(k) = identity, and do this for all n,
although we have not yet looked at k ∈ Kn for n > 2, to which we turn next:

• For k ∈ Kn, in general, we take k ∈ G(K)n−1 with

– s(k) = d1d
(n−1)
0 (k),

– t(k) = d
(n)
0 (k)

with G(K)n−1 free on the graph,

Kn
s //
t
// K0 ,

excepting the edges sn(x) for x ∈ Kn−1.

The face maps are given by

– di(k) = di(k) for 0 ≤ i < n− 1,

– dn−1(k) = dn−1(k)(dn(k))−1.

It is easy to check that these satisfy the simplicial identities with the degeneracies as given earlier.

We have chosen this source and target, based on a reasonable choice for f , but there are other
choices that could perhaps have been made. For instance, for (h2, h1) ∈W (H)2 with s(h2) = t(h1),
but that, perhaps, suggests forming h2 · s1(h1), or similar, and this might give another way of
defining generators for G(K)n−1 and hence a different expression for the elements. We would
expect that the result is isomorphic to the G that we have written down, as both should be adjoint
to W . The inconvenience of the definition that we have given is that the source and target of k seem
very strange. It would be nice to have, for instance, for k ∈ K2, s(k) = d1d2(k) and t(k) = d0d0(k)
as these, naively, look to be where the simplex starts and ends. Such a choice would make it easier
to link it with the left adjoint of the homotopy coherent nerve functor. On the ‘plus side’, for the
G that we have written down (and also for the Dwyer - Kan original version), is that it has an
easy unit and counit for the adjunction and a clear link with the twisting function (cf. page ??) for
the reduced case. (The other choices suggested may also work and the links with twisting function
formulations of twisted cartesian products may be as clear in that revised form. (I have never seen
it explored. Such an exploration would be a good exercise to do. If it works well, it could be
useful; if it does not work out, why not? Perhaps some reader will attempt this. I do not
know the answer.)

We have stated that this form of G is left adjoint to the ‘functional form’ of W and we launched
into this to examine what the idea of ‘weak morphism’ would give at the ‘elementwise’ level. Re-
member, a weak morphism from C to D corresponded to a map of simplicial groups from GW (K(C))
to K(D). The counit of the adjunction goes from GW to Id and one way to get some data that
correspond to a weak morphism is to find some neat way of describing a section of this from K(C)
to GW (K(C)). That would, we may suppose, correspond to a weak morphism from C to M(G, 1),
where G = GW (K(C)).)

For this to be feasible, we need to know more about the counit, ε : GW (H) → H, in general,
and so may as well look at the unit, η : K → WG(K), as well, so as to indicate the structures
behind this adjunction.
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The unit, ηK : K → WG(K): Remember what ηK is. It corresponds, in the adjunction, to
the identity on G(K), so one way to derive the following formulae is to work out f : K → W (H),
when starting with f : G(K)→ H.

We have that if k ∈ Kn, then f
n
(k) will be of the form (hn, . . . , h1) with hi ∈ Hi−1, as before.

Looking at dn(f
n
(k) = f

n−1
(dn(k)) gives us (hn−1, . . . , h1) and allows us to use induction to get

all but hn ∈ Hn−1, but we also have that fn−1(k) ∈ Hn−1, so we have an obvious candidate for
that missing element.

You can easily follow through this process, either for a general f : G(K) → H, or just for
f : G(K)→ G(K) being the identity morphism, and this gives ηK .

To write ηK down neatly, it is useful to introduce an abbreviation. If k ∈ Kn, its last listed face
is dnk and we will need to iterate this last face construction, dn−1dn(k) and so on. Rather than
have long strings di . . . dn−1dn(k), we will write ‘L′ for ‘last’ and so define

d
(m)
L = dn−m+1 . . . dn−1dn

as the m-iterated last face operator. With this notation, for k ∈ Kn,

ηKk = (k, dn(k), . . . , d
(n−1)
L (k)).

(You are left to check the detail.)

The counit, εH : GW (H) → H: We have already seen how to build f : G(K) → H if we
start with f : K → W (H), as that was how we sorted out the structure in this version of G(K).
Given such an f , where fn(k) = (hn(k), . . . , h1(k)), we had that

fn−1(k) = hn(k).

We thus get, in particular, that if we have h = (hn, . . . , h1) in W (H), then

εH(h) = hn,

so is almost a ‘projection’ defined on the generators. (Of course, it resembles even more the counit
of the free group(oid) monad which evaluates a word in the elements of a group.)

5.7.4 Identifying M(G, 1)

It is not difficult to start identifying the Moore complex, N(GW (H)), in terms of free groups on
Moore complex terms from H itself. You can do this with ‘bare hands’ and it is quite instructive.
A complete verification of what you might suspect the terms to be is quite tricky, however, so we
will limit ourselves to the case H = K(C) for C, our ‘usual’ crossed module, C = (C,P, ∂), as, there,
N(K(C))n is trivial for n ≥ 2, and we will even avoid calculating N(GW (K(C)))1, as we really
need its quotient M(GW (K(C)), 1). (We will, as before, write G for GW (K(C)), for convenience.)

We will use a neat argument to identify the crossed module, M(GW (K(C)), 1), via another
route. Before that we will look at the bottom terms of the Moore complex of this G.

We write h = (hn, . . . , h1), so this defines a generator h in Gn−1. We thus have G0 is freely
generated by the elements of P , i.e., G0

∼= FU(P ), where F is the free group functor and U the
underlying set functor.
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We can examine a generator, h, for n = 2, i.e., in G1, and

d1(h) = d1(h).d2(h)
−1

= (d1(h2).h1).(h1)
−1
.

We immediately can see that such a term will vanish if d1(h2) is trivial and with a little more work
can show that a word in such terms and their inverses vanishes if d1 of the h2-parts of it vanishes.
(We will leave this slightly vague as the calculation is worth doing and this is worth pursuing
on your own, so as to get a better ‘elementary’ understanding of G1 - and, in fact, of higher Gn
in more generality.) This suggests that N(G)1 may be the free group on the underlying set of
NK(C)1, but does not by itself prove this (and as we will side-step this calculation shortly, we do
not need to do it now).

Of course, M(G, 1) has ‘top term’ NG1/d0(NG2), so attacking at the elementwise level, the
next step would seem to be to work out NG2 or rather d0(NG2) as that is all we need for the
moment. We will not, in fact, do this, although, we repeat, it is worthwhile doing so, instead
we will backtrack a little and review the problem from another direction, one that we visited a few
pages back.

We have the counit of the adjunction, giving

ε : G→ K(C),

and, by the construction of the associated crossed complex, C(G), of the simplicial group G, an
adjoint induced map,

C(G)→ C.

This factorises via the map
M(G, 1)→ C,

that we are seeking to understand. For this last step, we are using that M(G, 1) is left adjoint to
the natural inclusion of the category of crossed modules into that of crossed complexes (both can
be ‘reduced’ or unreduced, it makes no difference).

We also had that C(−) was left adjoint to the ‘inclusion’ of crossed complexes (disguised, via
K and the Dold-Kan theorem, as group (or groupoid) T -complexes) into all simplicial groups (or
S-groupoids). This chain of left adjoints translates into a single universal property, one which is
very useful.

If we have any crossed module E having FU(P ) at its base, and any morphism

f : E→ C,

having that f0 : E0 → P is εP : FU(P ) → P , the counit of the free group monad, then we can
factor f through the pullback crossed module, ε∗P (C):

E1

  BBBBBBBB
// E1 ×P C

zzuuuuuuuuu

E0

(see page 37 and note that here ε∗P (C)1
∼= E1 ×P C). We will generalise this slightly in a moment,

but first we introduce some terminology. As before, C = (C,P, ∂C) and D = (D,Q, ∂D) are crossed
modules:
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Definition: (i) A map, f : C → D, of crossed modules is a fibration if f1 : C → D and
f0 : P → Q are both epimorphisms of groups.

(ii) A map, f, as above, is a trivial fibration if it is a fibration and the induced map,

C → D ×Q P,

is an isomorphism.

Remarks: (i) If f : C → D is a fibration, it should be obvious that K(f) : K(C) → K(D) is
a dimensionwise epimorphism of simplicial groups and hence is a fibration of such (in the sense
we discussed in section 1.3.5, page 30). We therefore get a fibration exact sequence of homotopy
groups. We set B = Ker(f), that is, (Ker(f1),Ker(f0), ∂) for the restricted ∂ = ∂C|Ker(f1), and
then obtain

1→ π1(B)→ π1(C)→ π1(D)→ π0(B)→ π0(C)→ π0(D)→ 1.

This is just the usual Ker−Coker 6-term exact sequence of homological algebra, but in a slightly
non-Abelian context.

(Remember that in our notation π1(C) = Ker ∂C and π0(C) = Coker ∂C ∼= P/∂CC. This is
a shift of index from the notation used in some sources, where our π1(C) would be their π2(C),
because it is the π2 of the classifying space of C. Likewise our π0 is their π1, so always check
when comparing results.)

(ii) Suppose now that

C
f1 //

∂C
��

D

∂D
��

P
f0
// Q

is a pullback square (which is just saying that C → D ×Q P is an isomorphism). It is well known
that that implies that the kernels of ∂C and ∂D are isomorphic (via the restricted f1). That fact is
general and has a useful, easy categorical proof, but, none-the-less, we will give an ‘element-wise’
one, since it shows different aspects that can also be useful. It is equally easy, but slightly less
general.

We replace C by D ×Q P , so an element of this is a pair, (d, p), such that ∂Dd = f0p. The
description of ∂C is then ∂C(d, p) = p, the second projection morphism. If (d, p) ∈ Ker ∂C, then p =
1P and ∂Dd = f01P = 1Q, so the isomorphism claimed associates (d, 1) and d, where d ∈ Ker ∂D.

Going back to the exact sequence, we have that the induced map from π1(C) to π1(D) is an
isomorphism in this case (as π1(B) is trivial). We can calculate B explicitly, of course. Identifying
C with D ×Q P once again, f1(d, p) = d, so (d, p) ∈ Ker f1 if d = 1D, and then, of course,
f0(p) = 1Q, so p ∈ Ker f0. The crossed module, B, is thus isomorphic to the crossed module,
(Ker f0,Ker f0, id), so, again of course, π1(B) is trivial! It is then clear that π0(B) is also trivial.
In other words,

Lemma 40 A trivial fibration of crossed modules is a weak equivalence. �

The particularly useful case of this is the following: Given a crossed module, C = (C,P, ∂C),
pick a free group F together with an epimorphism,

ε : F → P,
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(for instance, if given a presentation of P , use the free group on the given set of generators). Form
ε∗(C) = (C×P F, F, ∂′), which will be, as we know, a crossed module. There is an induced fibration,

f : ε∗(C)→ C,

and this will be, by construction, a trivial fibration.

Example: We could take F = FU(P ), the free group on the underlying set of P with the
counit, εP , as the epimorphism. Our earlier discussion suggested that ε∗P (C) looks somewhat like
our G from there.

This example is what we will need, but it is not the only one around, of course. (That ‘looks
somewhat like’ is vague and we need to do better than that! Here is that in detail.)

Proposition 54 For C = (C,P, ∂C), G = GW (K(C)), and εP : FU(P ) → P , as before, there is
an isomorphism,

M(G, 1) ∼= ε∗P (C).

Proof: We know the base groups are both isomorphic to FU(P ), and so have to produce an
isomorphism,

M(G, 1)1
∼= FU(P )×P C,

over P , compatibly with the actions.
We certainly have the counit morphism,

M(G, 1)1

∂
��

// C

∂C

��
FU(P ) εP

// P

which we will call f, for convenience. We know it is a weak equivalence, since GW (K(C))→ K(C)
is a weak equivalence of simplicial groups, so Ker f has trivial homotopy.

We get f : M(G, 1)1 → FU(P )×P C by the universal property of pullbacks. Explicitly

f(h) = (∂h, f1(h)).

This map, f , is a morphism of crossed modules by simple general arguments, (i.e., nothing to do
with our particular situation here). We thus want to prove f is an isomorphism.

We note that Ker f ⊆ Ker f1 ∩Ker ∂, but Ker f has trivial π1, so Ker f must be trivial and
f is a monomorphism.

Is f an epimorphism? If (h0, c1) ∈ FU(P )×P C, so f0(h0) = ∂c1, then pick h1 ∈M(G, 1)1 such
that f1(h1) = c1, (check that f1 is onto). We have

f0(h0) = f0(∂h1),

so h0 = ∂h1.k0 for some k0 ∈ Ker f0. We also have π0(Ker f) is trivial, so there is some k1 ∈ Ker f1

with ∂k1 = k0, but then h′ = h1k1 satisfies

∂h′ = h0, f1(h′) = f1(h1) = c1,

so f is onto. �
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5.7.5 Cofibrant replacements for crossed modules

In other words, we have identified M(G, 1) completely and it has an easy description.

What about the properties of other ε∗(C) for ε : F → P , with F free? For the moment, this is
prompted by curiosity, but it does provide some useful insights later on.

Our present situation is that a weak map from C to D is given by an actual map of crossed
modules,

ε∗P (C)→ D,

and we also know that the map, ε∗P (C)
'→ C, is ‘really’ a counit or ‘augmentation’ of a resolution.

We get a span

C
'← ε∗P (C)→ D.

What about other similar spans,

C
'← ε∗(C)→ D,

with ε, an epimorphism, ε : F → P , and F a free group? Do they also give weak maps in some
way? Of course, this is almost the same question as the previous one.

Before looking at this, we note a nice result:

Proposition 55 For C = (C,P, ∂C), with P a free group, the natural morphism ε∗P (C)
'→ C is a

split epimorphism.

Proof: Of course, ε : FU(P ) → P is split, since P is free. Let σ0 : P → FU(P ) be a splitting.
From σ0, we can construct

σ1 : C → FU(P )×P C,

by

σ1(c) = (σ0∂C(c), c),

as being the unique group homomorphism given by the pullback property. It is easy to check that
(σ1, σ0) defines a crossed module morphism splitting the epimorphism induced by ε∗P . �

In fact, this split epimorphism is a trivial fibration, but we will not need this.

We next introduce a bit more of the homotopical terminology as applied to crossed modules,
or equivalently to 2-group(oid)s. The ideas are derived from the paper, [100], by Moerdijk and
Svensson. We first extend ‘fibration’ and ‘trivial fibration’ from crossed modules to 2-group(oid)s
via the usual equivalence of categories. We give this in two forms, the first is from Noohi’s paper,
[108], the second from [100].

Definition: A morphism, ψ : A → B, of 2-groupoids is called a Grothendieck fibration (or
more simply a fibration) if it satisfies the following properties:

Fib. 1: for every arrow b : B0 → B1 in B and every object, A1, in A over B1, (so ψ(A1) = B1),
there is a lift a : A0 → A1 with codomain, a1;

Fib. 2: for every 2-arrow, β : b0 ⇒ b1 in B, and every arrow a1 in A such that ψ(a1) = b1, there is
an arrow a0 and a 2-arrow α : a0 ⇒ a1 such that ψ(α) = β.
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The fibration is trivial if it is also a weak equivalence, i.e., inducing isomorphisms on π0, π1 and
π2.

Remark: This is nice as the first condition is a lifting condition for 1-arrows, whilst the second
is one for 2-arrows. It is worth noting a slight more or less inconsequential choice is being made
here. In covering space theory, it is usual to mention ‘unique path lifting’. Recall that this relates
to a continuous map of spaces, say p : Y → X, and it requires that if λ : I → X is a path in X and
we specify a point y0 over x0 = λ(0), the starting point of λ, then there is a (unique) lift, λ̃, of λ
starting at y0.

In the above definition of fibration for 2-groupoids, no uniqueness is required, but also the
specified point is the codomain of the 1-arrow, which intuitively corresponds to the end of the
path rather than the start. This does not matter here as in a 2-groupoid both 1- and 2-arrows are
invertible, but it is another instance of the lax / op-lax / pseudo ‘conflict’, so is worth noting that
a choice has been made here.

Warning about the notation in ‘trivial fibration’: At the risk of repeating this too often,
it should be noted that, if thinking of crossed modules rather than 2-groupoids, the above π1 is the
cokernel of the structure map and π2 is its kernel. The set of connected components for a 2-group
will be a singleton. The π1 of the 2-group is the π0, in our notation, of the corresponding crossed
module or simplicial group, and so on.

The alternative definition combines the two conditions in one. It occurs in Moerdijk and
Svensson’s paper, [100], so will be referred to as the M-S form of the definition.

Definition (alternative M-S form): A morphism, ψ : A → B, of 2-groupoids is called a
Grothendieck fibration (or more simply a fibration) if it satisfies the following condition:

for any arrow, a : A1 → A2, in A and any arrows, b1 : B0 → ψ(A1) and b2 : B0 → ψ(A2), then
any 2-arrow, α : b2 ⇒ ψ(a) ◦ b1, can be lifted to a 2-arrow, α̃ : b̃2 ⇒ a ◦ b̃1, (so ψ(α̃) = α, etc.).

Proposition 56 The two forms of the definition are equivalent.

Proof: We limit ourselves to a sketch, as the proof is quite easy, once you see that doing a fairly
obvious thing is exactly what is needed. (Of course, the details are the left to you as an exercise.)

First assume we have a morphism satisfying the alternative (M-S) form of the definition. We
must show it to have a lifting property for both 1- and 2-arrows.

Suppose we have b : B0 → B1 in B and an object, A1, in A over B1, (so ψ(A1) = B1), then, in
the alternative form, take b1 = b2 = b with β : b1 ⇒ b1 the identity 2-arrow. The lift given by the
M-S condition gives us a b̃ : A0 → A1 (and a β̃ that we do not actually need or use).

We thus have: ‘M-S’ ⇒ ‘1-arrow lifting’.

To derive ‘2-arrow lifting’ from ‘M-S’, we start with β : b0 ⇒ b1 and a1 such that ψ(a1) = b1,
and need to get some β̃ : b̃0 ⇒ a1 over β. This time we choose, in the input to the M-S condition,
a := a1, b1 := id, b2 := b0, so β : b2 ⇒ ψ(a) ◦ b1, as required, and can read off the lift accordingly.
(Beware, you will get an extra lift, say x, of b1 in your expression that you do not want, and cannot
guarantee that it is the identity, however it is invertible, so you can adjust things to fit.)

Given that sketch, the other direction of the equivalence is easy. Assuming 1- and 2-arrow
lifting, start with the M-S situation, lift b1 using 1-arrow lifting, then b1 ◦ ψ(a) = ψ(b̃1 ◦ a), so we
can apply 2-arrow lifting to β. �
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The advantage in having these two forms of the definition is that the M-S form is very neat
from the categorical context, but the arrow lifting version is more easily seen to be the 2-groupoid
version of the definition of fibration of crossed modules that we gave on page 209 and of the
‘classical’ epimorphism-condition for a ‘fibration of simplicial groups’.

Moerdijk and Svensson, [100], also consider cofibrations. For the moment, we just need the
corresponding condition for an object to be cofibrant.

Definitions: (i) A 2-group, G, is cofibrant in the Moerdijk-Svensson structure, (we will say M-S
cofibrant) if every trivial fibration H → G, where H is a 2-groupoid, admits a section.

(ii) A crossed module, C, is cofibrant if the corresponding 2-group, X (C), is M-S cofibrant.

Proposition 57 (Noohi, [106]) A crossed module C = (C,P, ∂), is cofibrant if and only if P is a
free group. �

The proof, which is given by Noohi, [106], is similar to that given above for Proposition 55. It
can be safely left to the reader, except to note that it does require the use of the result that
subgroups of free groups are free. (Analogues of this result in other categories than that of groups,
would need reformulation to avoid the use of the analogous statement which may or may not be
true in such settings.)

Example: For any crossed module, C, the pullback crossed module, ε∗P (C), or, equivalently
M(GW (K(C)), 1), is cofibrant. We note also that it depends functorially on C and that there is a
natural trivial fibration, ε∗P (C)→ C.

Definition: (i) For C, a crossed module, a cofibrant replacement for C is cofibrant crossed
module QC, together with a trivial fibration, q : QC→ C.

(ii) A cofibrant replacement functor (for crossed modules) consists of a functor, Q : CMod →
CMod, together with a natural transformation, q : Q→ Id, such that for each crossed module, C,
qC : QC→ C is a cofibrant replacement for C.

The idea of cofibrant replacement given here is just the particular case for the context of crossed
modules of a general notion from homotopical algebra. (We suggest that you look at a standard
text on model categories and other ideas of homotopical algebra for further details. One such is
Hovey’s [76].) In a model category, as considered there, there are notions of weak equivalence,
fibration and cofibration and thus of fibrant and cofibrant objects. For example, in the category of
simplicial sets, considered with its usual model category structure, weak equivalences are what we
would expect, that is, simplicial maps inducing isomorphisms of π0 and all higher homotopy groups
for all possible choices of base points. Fibrations are Kan fibrations and cofibrations are simplicial
inclusions. All objects are cofibrant, but only the Kan complexes are fibrant. For simplicial groups,
fibrations are the morphisms that are epimorphisms in each dimension, and the cofibrant objects
are the simplicial groups that are free in each dimension.

For any model category, one can define cofibrant replacements as above, and, dually, fibrant
replacements, and can prove that they always exist. They are the model categoric analogues of the
projective and injective resolutions of more classical homological algebra and are similarly used to
define derived functors. These, of course, are intimately related to cohomology theory, but we will
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not follow that link very far here, as our main use for this here is as an illustration and example of
homotopy coherence.

For some of the theory of cofibrant replacements and total derived functors, look at the book
by Hovey, [76], which is also an excellent introduction to the wider theory of model categories. (It
is also useful to glance back at the original sources on homotopical algebra, in particular Quillen’s
orginal [113] and the related [114].)

If C is a model category and Q is a cofibrant replacement functor, the idea is that the value
of the derived functor of some functor, F : C → D, at an object, C, is obtained by looking at
F (QC) ‘up to homotopy’. That is vague, but, in our context of weak maps, we have, for any given
crossed module, D, a functor CMod(−,D) from CModop to . . . , where? Actually ‘to the category
of groupoids’ would be a suitable choice, as we have not only morphisms between crossed modules,
but homotopies between them. There is also a groupoid of weak maps from C to D with weak
natural transformations as the arrows. (This is left to you to look up in Noohi’s papers, [106, 108]
or to investigate yourselves.) As our functorial Q, given explicitly by M(GW (K(−), 1)), naturally
gives weak maps, we come back to our question from earlier, which we can now ask with more
exact terminology:

Suppose q : QC → C is a cofibrant replacement for C, and ψ : QC → D is a map of crossed
modules, does ψ induce a weak map from C to D?

We write QC = (QC1, F, ∂Q), and find that, as q : QC → C is a trivial fibration, QC1
∼=

F ×P C = q∗0(C)1. We thus have a lot of information about QC.
Next, apply the functorial construction to q : QC→ C to get

ε∗F (QC) //

��

ε∗P (C)

��
QC q

// C

as the two vertical morphisms and the bottom one are weak equivalences, so is the top. It is also
a fibration. (In fact, it is the induced map which at level 1 is the obvious map,

FU(F )×F (F ×P C)→ FU(P )×P C,

so is easily checked to be one.) It is thus a trivial fibration with cofibrant codomain. It is therefore
split by some section,

σ : ε∗P (C)→ ε∗F (QC).

We can compose this with the natural morphism, qQC : ε∗F (QC)→ QC.
Now suppose ψ : QC→ D is a morphism of crossed modules, then it gives a composite,

ε∗P (C)
σ→ ε∗F (QC)

qQC→ QC
ψ→ D.

Clearly, there may be many sections of the map from ε∗F (QC) to ε∗P (C), so many different ‘weak
maps’ would seem to correspond to a single ψ : QC → D, but these weak maps only depend on ψ
in the ‘last composition’. If we look slightly more deeply, it becomes clear that they correspond
to sections of FU(F ) → FU(P ), i.e., to choices of transversals for FU(F ) → P . This is known,
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‘standard’, even ‘classical’ territory, and will be left to you to explore. The point is that two
weak maps coming from different sections σ and σ′ are likely to be ‘homotopic’ in some sense.
(This is explored in the work of Noohi that we referred to earlier.) We summarise the above in the
following:

Proposition 58 If q : QC → C is any cofibrant replacement for a crossed module, any crossed
module morphism, ψ : QC→ D, induces a (usually non-unique) weak map of crossed modules from
C to D. �

5.7.6 Weak maps: from cofibrant replacements to the algebraic form

It is not hard to start with a weak map, f : C → D, described as a pseudo-functor from X (C)
to X (D), and to convert that description, via the nerves, to the algebraic description of f. (For
instance, as the nerve of X (C) has P in one dimension and C × P × P in the next, the values of
f on these should give the f0, f1, and the pairing without too much bother.) Leaving you to
investigate that later by yourself, let us pass further into the simplicial description and use the
functorial cosimplicial replacement, ε∗P (C), so that we specify f by a crossed module morphism,

f : ε∗P (C)→ D.

(We will write D = (D1, D0∂D).) This gives us a square

F ×P C
f1 //

∂

��

D1

∂D
��

F
f0

// D0

where we have written F for FU(P ). The elements of F ×P C are pairs (ω, c), where εP (ω) = ∂Cc,
thus ω is a word in generators corresponding to elements of P . We will write (p) for the generator
coming from p ∈ P .

Surprisingly enough the f0 in this corresponds almost exactly to the f0 in the usual algebraic
description. There is a small difference, f0(p) in the latter description is f0((p)) in the former
one, so is the composite of the cofibrant replacement’s f0 with the set theoretic section, ηP , of the
epimorphism, εP : F → P , given by ‘p goes to (p)’, in other words, with the unit of the free-forget
adjunction.

Notationally we need to distinguish the two, so will write f cri for the different levels of the
crossed module morphism, f : ε∗P (C)→ D, the superfix ‘cr’ standing for ‘cofibrant replacement’, of
course. This notation will be a temporary one. We thus have

f0(p) = f cr0 ((p)).

We need to obtain 〈−,−〉 : P ×P → D1, and f1 : C → D1 and these must satisfy certain rules; see
the definition on page 201. The basic ones are ∂Df1 = f0∂C, and the two ‘almost a homomorphism’
conditions. The one for f0 gives

f0(p2p1) = ∂〈p2, p1〉−1f0(p2)f0(p1).

This gives us a lever to get at 〈p2, p1〉. For any pair of elements, p2, p1 in P , we have a cocycle

(p2)(p1)(p2p1)−1 ∈ FU(P ) = F
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and this is in the kernel of εP . As a result, there is an element

{p2, p1} = ((p2)(p1)(p2p1)−1, 1) ∈ F ×P C.

We look at

f cr1 {p2, p1} ∈ D1.

We have

∂Df
cr
1 {p2, p1} = f cr0 ∂{p2, p1} = f0(p2)f0(p1)f0(p2p1)−1,

so if we take 〈p2, p1〉 := f cr1 {p2, p1}, we get the ‘almost a homomorphism’ condition for f0.

What about that for f1? Well, we have yet to write down some f1 in terms, perhaps, of f cr1 ,
but if we have c ∈ C, then we clearly have an element ((∂Cc), c) ∈ F ×P C, so it is a fairly safe bet
that f1(c) will be f cr1 ((∂Cc), c), (or possibly its inverse, since directions can easily get reversed with
the different conventions, and it does not pay to be too sure in advance of detailed checking!) The
obvious thing to do is to try it in the W2 ‘almost a homomorphism’ condition for f1, again see the
discussion around page 201. In fact, we note

((∂Cc2), c2).((∂Cc1), c1) = ((∂Cc2)(∂Cc1), c2c1)

= ((∂Cc2)(∂Cc1)(∂C(c2c1))−1, 1)((∂C(c2c1), c2c1),

so, mapping this via f cr1 gives

f1(c2)f1(c1) = 〈∂c2, ∂c1〉.f1(c2c1),

as required.

Of course, we will need to check the other two conditions, but that is left to you. (The cocycle
condition is easy to check, the whiskering conditions do require some work. You might start by
checking what the action of F on F ×P C is.) We have proved (modulo your checking):

Proposition 59 Given a morphism f cr : ε∗P (C)→ D, the structure

• f0 : P → D0 given by f0(p) = f cr0 ((p));

• f1 : C → D1 given by f cr1 (∂Cc), c);

• 〈−,−〉 : P × P → D1 given by 〈p2, p1〉 := f cr1 {p2, p1}, where {p2, p1} = ((p2)(p1)(p2p1)−1, 1),

specifies a weak map, f : C→ D, (in the algebraic description format). �

5.7.7 Butterflies

We have, when discussing the algebraic definition of a weak map, pointed out the similarities of
certain structure with the cocycle description of group extensions and, thus, of group cohomology.
For instance, f0 and 〈−,−〉 together yield something very like a weak action of P (on D). The
cocycle condition, also, is very reminiscent of the conditions on the factor set, f : G×G→ K, that
ensure associativity of the multiplication if reconstructing the middle term of the extension from
the two ends, together with the weak action and the factor set. This suggests that there should be
an extension associated with a weak map.
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Collecting up evidence, we have our ‘factor set’-like pairing, 〈−,−〉, going, in our typical situa-
tion, from P × P to D1. This would correspond to a group extension

D1
ι→ E

ρ→ P,

and the cocycle condition suggests that we use f0 : P → D1 to get a weak action of P on D1, that
is, looking at the cocycle condition and comparing it with the factor set condition (page 44), we
need to get P to ‘act’ on D1, and we can use f0 to get from P to D0 and then use the action of
D0 on D1 to get something that might work. In other words, we will interpret f0(p)x for p ∈ P and
x ∈ D1 as the analogue of the weak action in the extension.

To construct the middle term, E, (as in section 2.3.1), we take the set D1 × P and give it a
multiplication

(x1, p1)(x2, p2) = (x1.
f0(p1)x2.〈p1, p2〉, p1p2).

The checking that this is associative, etc., is quite easy, but we will give it in some detail as it is
neat and shows how the properties of the pseudo-functor defining the weak map are transformed
into quite usual properties of the object, E. This checking is, of course, quite standard in the
theory of group extensions.

Lemma 41 The above multiplication is associative.

Proof: We calculate

(x1, p1)((x2, p2)(x3, p3)) = (x1, p1)(x2.
f0(p2)x3〈p2, p3〉, p2p3)

= (x1.
f0(p1)x2.

f0(p1)f0(p2)x3.
f0(p1)〈p2, p3〉〈p1, p2p3〉, p1p2p3).

(It is worth noting that terms that exist in the cocycle condition for 〈−,−〉 are occurring naturally
here.) The ‘other side’ gives

((x1, p1)(x2, p2))(x3, p3)) = (x1.
f0(p1)x2〈p1, p2〉, p1p2)(x3, p3)

= (x1.
f0(p1).〈p1, p2〉.f0(p1p2)x3〈p1p2, p3〉, p1p2p3).

Comparing the two expressions, we can match up corresponding parts leaving, in the first expres-
sion,

f0(p1)f0(p2)x3.
f0(p1)〈p2, p3〉〈p1, p2p3〉,

which rewrites, using ‘cocycle’, to

f0(p1)f0(p2)x3.〈p1, p2〉〈p1p2, p3〉.

The last term matches with one in the equivalent position in the second expression. We then attack
f0(p1)f0(p2), using ‘almost a homomorphism’, giving ∂〈p1, p2〉f0(p1, p2). We finally use the Peiffer
identity, so

f0(p1)f0(p2)x3.〈p1, p2 = ∂〈p1,p2〉f0(p1,p2)x3.〈p1, p2〉
= 〈p1, p2〉.f0(p1p2)x3.〈p1, p2〉−1.〈p1, p2〉
= 〈p1, p2〉.f0(p1p2)x3,

as hoped. �
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The identity for the multiplication is clearly (1, 1), so we certainly have a monoid. What about
inverses? We are given (x, p), and so need to solve

(y, q).(x, p) = 1.

This gives q = p−1 and
y = 〈p−1, p〉f0(p−1)x−1

and so
(x, p)−1 = (〈p−1, p〉f0(p−1)x−1, p−1).

Remark: Of course, we know by standard elementary arguments that this ‘left inverse’ is also
a ‘right inverse’, but it is quite interesting to calculate the product, showing

(x, p)(〈p−1, p〉f0(p−1)x−1, p−1) = (1, 1)

directly. ‘Interesting’? Yes, because it presents some useful calculations that otherwise would not
come to the surface this early in an investigation. For instance, we have both 〈p−1, p〉 and 〈p, p−1〉,
occurring in the formulae. What is their relationship?

Lemma 42
〈p, p−1〉 = f0(p)〈p−1, p〉.

�

The proof follows from the cocycle condition using p1 = p3 = p and p2 = p−1.
Another such result is

Lemma 43
f0(p)f0(p−1) = ∂〈p, p−1〉.

�

This is, of course, an immediate consequence of ‘almost a homomorphism’ and ‘normalization’, but,
for calculations, is very useful to have explicitly stated.

We have now verified that E is a group - which was obvious from the classical theory of factor
sets and has nothing specific to do with weak maps or crossed modules. We record the structural
maps for convenience:

in D1
ι→ E

ρ→ P, the maps are given by ι(x) = (x, 1), ρ(x, p) = p.
These are easily seen to be homomorphisms.
All that is standard Schreier theory of factor sets and extensions and gives us a diagram, (a

‘partial butterfly’),

C

∂

��

D1

∂D

��

ι

~~}}}}}}}}

E

ρ
����������

P D0
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In Noohi’s theory of papillons (butterflies), (cf. [106] and [2]), we have the following definition:

Definition: Let C = (C,P, ∂) and C′ = (C ′, P ′, ∂′) be two crossed modules. By a papillon, or
butterfly, from C to C′, we mean a commutative diagram of groups

C
κ

��@@@@@@@

∂

��

C ′

∂C′

��

ι

~~}}}}}}}

E

λ   AAAAAAA

ρ
��~~~~~~~

P P ′

in which the diagonals are complexes of groups (so λκ and ρι are trivial homomorphisms), the
NE-SW sequence,

C ′
ι→ E

ρ→ P,

is short exact (hence is a group extension), Ker ρ = Im ι, and, moreover, for all e ∈ E, c ∈ C and
c′ ∈ C ′, we have

ι(λ(e)c′) = eι(c′)e−1,

and
κ(ρ(e)c) = eκ(c′)e−1.

As ‘papillons’ are introduced, in [106] and [2], as a way to handle weak maps, we should be
able to complete our partial butterfly to a full one by defining a NW-SE complex. The first map,
κ : C → E, must be something like κ(c) = (f1(c), ∂c), as the usual rule in these situations is ‘build
it simply from the parts that you have’. That, however, does not quite work. (This may be due to
a question of conventions when representing elements of E in the form (x, p), and some different
choice might result in the ‘fault’ disappearing, however I doubt it, but have no evidence ‘one way
or t’other’, - it is left as a challenge to the reader to shed some light on this!) Surprisingly
enough, what happens with that attempt gives us the clue to resolving the problem.

(To simplify notation slightly, we will usually write ∂ for the boundary in all the crossed modules
involved. Context in each case diminishes the risk of confusion.)

Define κ(c) = (f1(c)−1, ∂c).

Proposition 60 Defined by this, κ : C → E is a homomorphism satisfying

κ(ρ(e)c) = eκ(c)e−1.

Proof: (This is another of the calculatory verification proofs that could be very safely left to the
reader - but, because of strange inversion in the first factor of κ, it is interesting to see how this
works.)

We take c1, c2 ∈ C,

κ(c2c1) = (f1(c2c1)−1, ∂c2c1)

= ((〈∂c2, ∂c1〉−1f1(c2)f1(c1))−1, ∂c2∂c1)

= (f1(c1)−1f1(c2)−1〈∂c2, ∂c1〉, ∂c2∂c1),
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whilst

κ(c2)κ(c1) = (f1(c2)−1, ∂c2)(f1(c1)−1, ∂c1)

= (f1(c2)−1.f0(∂c2)f1(c1)−1〈∂c2, ∂c1〉, ∂c2∂c1).

Using that f0∂ = ∂f1, and the Peiffer identity completes the proof that these are equal.

To prove the second condition, it helps to note the following lemma.

Lemma 44 For any c ∈ C, c′ ∈ C ′, [ι(c′), κ(c)] = 1.

Proof: We note ι(c′) = (c′, 1), whilst κ(c) = (f1(c)−1, ∂c). Now

(c′, 1)(f1(c)−1, ∂c) = (c′f1(c)−1, ∂c),

since 〈1, ∂c〉 = 1 and f0(1) = 1. On the other hand,

(f1(c)−1, ∂c)(c′, 1) = (f1(c)−1.f0(∂c)c′, ∂c),

but, as we have used so many times f0∂ = ∂f1, so the Peiffer identity gives f0(∂c)c′ = f1(c)c′f1(c)−1

and the lemma follows. �

Because of this and the fact that any (x, p) ∈ E can be decomposed as (x, 1)(1, p), it suffices to
prove the result for e = (1, p). This is quite easy and goes as follows:

We first work out κ(pc). This is (f1(pc)−1, p.∂c.p−1), so we first need f1(pc), but the formula
from earlier gave

f1(pc) = 〈p.∂c, p−1〉−1〈p, ∂c〉−1f1(c)〈p, p−1〉,

so our ‘target formula’ should be

κ(pc) = (f1(pc)−1, p∂cp−1) = (〈p, p−1〉−1f1(c)−1〈p, ∂c〉〈p.∂c, p−1〉, p.∂c.p−1).

We thus have to show that this is the result of conjugating κ(c) by (1, p). Now

(1, p)(f1(c)−1, ∂c)(1, p)−1 = (1, p)(f1(c)−1, ∂c)(〈p−1, p〉−1, p−1)

= (1, p)(f1(c)−1.f0(∂c)〈p−1, p〉−1〈∂c, p−1〉, ∂c.p−1)

= (1, p)(f1(c)−1.∂f1(c)〈p−1, p〉−1〈∂c, p−1〉, ∂c.p−1)

= (1, p)(f1(c)−1.f1(c)〈p−1, p〉−1f1(c)−1〈∂c, p−1〉, ∂c.p−1) by Peiffer

= (1, p)(〈p−1, p〉−1f1(c)−1〈∂c, p−1〉, ∂c.p−1)

= (f0(p)〈p−1, p〉−1.f0(p)f1(c)−1.f0(p)〈∂c, p−1〉〈p, ∂c.p−1〉, p.∂c.p−1),

but f0(p)〈p−1, p〉−1 = 〈p, p−1〉−1, as we saw earlier, and the cocycle rule tells us that

〈p, ∂c〉〈p.∂c, p−1〉 = f0(p)〈∂c, p−1〉〈p, ∂c.p−1〉,

so the verification is complete. �

We next need λ : E → P ′. If e = (x, p) ∈ E, both x and p map easily into P ′ and, as there is
nothing to choose between them, ..., we use them both and try λ(x, p) = ∂x.f0(p).
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Lemma 45 Thus defined, λ : E → P ′ is a homomorphism, and λκ is the trivial homomorphism,
(so NW-SE is a group complex).

Proof: Left to you. �

We must also check the validity of ι’s credentials!

Proposition 61 Defining ι : C ′ → E by ι(x) = (x, 1), ι is a homomorphism, satisfying:
for all e ∈ E, and c′ ∈ C ′

ι(λ(e)c′) = eι(c′)e−1,

Proof: The first part is easy, since ι(x2x1) = (x2x1, 1), whilst the multiplication fromula in E gives
the same thing for ι(x2)ι(x1).

We next note that, if e = (x, p), then λ(e) = ∂x.f0(p), so

ι(λ(e)c′) = (∂x.f0(p)c′, 1) = (x.f0(p)c′.x−1, 1),

whilst

(x, p)(c′, 1)(x, p)−1 = (x.f0(p)c′, p)(〈p−1, p〉−1.f0(p−1)x−1, p−1)

= (x.f0(p)c′.f0(p)〈p−1, p〉−1.f0(p)f0(p−1)x−1〈p, p−1〉, 1).

We have f0(p)f0(p−1) = ∂〈p, p−1〉−1, so this simplifies to

(x.f0(p)c′.f0(p)〈p−1, p〉−1〈p, p−1〉x−1〈p, p−1〉−1〈p, p−1〉, 1),

and using that f0(p)〈p−1, p〉 = 〈p, p−1〉 gives the result. �

We summarise:

Proposition 62 From a weak map, f : C→ C′, the above construction gives a papillon, f,

C
κ

��@@@@@@@

∂

��

C ′

∂C′

��

ι

~~}}}}}}}

E

λ   AAAAAAA

ρ
��~~~~~~~

P P ′

from C to C′. �

What about a converse to this? Does a papillon yield a weak map in some nice way? Recalling
that the NE-SW sequence is a group extension, if we pick a section for ρ and compose it with λ,
we should get a possible f0 : P → P ′, and a ‘factor set’ pairing 〈−, 〉 : P × P → C ′. We will also
obtain a decomposition of E as a product of P and C ′ at the underlying set level, and hence can
use κ and the set theoretic projection to C ′ to obtain a suitable f1. we will leave the investigation
of this as an extended exercise for you.



222 CHAPTER 5. HOMOTOPY COHERENCE AND ENRICHED CATEGORIES.

Of course, different sections of ρ may yield different f0s, so we need a notion of morphisms of
papillons and there is an obvious candidate.

Definition: If C, and C′ are two crossed modules and f and f
′ are two papillons from C to C′

(with central group E′ in f
′, and with ‘primes’ on the morphisms, κ′, etc.), then a morphism from

f to f
′ is a homomorphism, ϕ : E → E′, such that κ′ = ϕκ, etc., thus making the evident diagram

commute.

Such diagrams compose in the obvious way. This gives a category, in fact, a groupoid because
of the following:

Lemma 46 Any morphism ϕ : f → f
′ between two papillons,f to f

′, as above, is an isomorphism.

Proof: This is clear from the fact that ϕ yields a map of extensions

1 // C ′ // E //

ϕ

��

P // 1

1 // C ′ // E′ // P // 1

and any such ϕ must be an isomorphism by the usual 5-lemma argument on short exact sequences.
(Really you should check that the inverse of ϕ (as a group homomorphism) gives a
morphism of papillons inverse to ϕ itself, but that is more or less obvious.) �

The category of papillons from C to C′ is thus a groupoid, but so is the category of weak
maps and ‘weak natural transformations’ between them. It may be useful to investigate the
relationships between them. This is one of the themes of Noohi’s work, [108]. His joint work
with Aldrovandi, [2], further explores this in the context of stacks (of groupoids) and so is also
highly relevant to our overall themes.

5.7.8 . . . and the strict morphisms in all that?

As we noted much earlier, any morphism of crossed modules gives a 2-functor of the corresponding
2-groups, that is, a strict, rather than an op-lax, ‘2-functor’. It would be very bizarre if the fact
that a given ‘weak morphism’ was actually a ‘strict’ one was not evident in the descriptions. That
is not to claim that we should be necessarily able to glance at some weak map and decide quickly if
it is actually a strict one. No, we should perhaps expect to have to do a little work, to test ‘things’
somewhat. What ‘things’ however?

We start with the description via nerves. Any strict f : C→ D induces a simplicial map,

Ner(f) : Ner(C)→ Ner(D),

both for Ner(C) interpreted as Nerh.c.(X (C)) and as W (K(C)). Does Ner(f) have any identifiable
property over arbitrary simplicial maps between two nerves (and thus over weak maps)?

The secret identifier is ‘preservation of thinness’. We have had several definitions of the nerve of
a crossed module. We had W (K(C)), Nerh.c.(X (C)), but also Crs(π(−),C), that is, the simplicial
set of crossed complex maps from the various π(n) to C, where this π(n) is the free crossed complex
on the n-simplex, ∆[n], as was briefly discussed on page ??. That ‘singular complex ’ version is



5.7. PSEUDO-FUNCTORS BETWEEN 2-GROUPS 223

very useful, and we have not yet exhausted its possibilities, far from it, but neither have we really
done it justice, yet!

These various nerves are isomorphic, and so are all T -complexes. The thin elements in the
last description are those τ : π(n) → C, which map the generator corresponding to ιn, the top
level non-degenerate n-simplex of ∆[n], to an identity element. The elements of each Ner(C)n for
n > 2 are all thin since, as a crossed complex, C is trivial in dimensions greater than 2. (Beware of
indexing conventions! Yes, we do need 2, here not 1.)

If we use the h. c. / geometric nerve form, a general 2-simplex, τ in Ner(C) has form,

τ = (x0, x1, x2;x(012) : x1 ⇒ x0x2),

where, thus, x(012) = (c, x1) with ∂c.x1 = x0x2. The interpretation of the condition that τ(ι2) be
the identity is that c is the identity of C, i.e., the 2-simplex is ‘really’ in Ner(P ), in other words,
it commutes, x1 = x0x2.

The thin 1-simplices will be the degenerate ones. What about thin 3-simplices? We know
Ner(C) is 3-coskeletal, and this came out to be because there were no non-identity 3-cells in the 2-
groupoid, X (C), and, yes, that means that any τ : π(3)→ C must send the generator corresponding
to ι3 to the identity element, ‘there ain’t nothing else there to map it to!’. We thus have all 3-
simplices are thin, as are all higher dimensional simplices.

Remark: It is a good exercise to define thinness for these simplices in this way (i.e., without
explicit reference to crossed complexes or to π(n)), and then to check directly that the result is a
T -complex (definition and discussion starting on page 30 if you need it). Another useful exercise
is to write down what π(n) is in ‘gory’ detail and to explore the isomorphisms that we mentioned
above between the descriptions of Ner(C) given here and the crossed complex based one as a
‘singular complex’.

To continue this exploration of ‘strictness’ of morphisms, we probably need a definition:

Definition: A simplicial map, f : Ner(C) → Ner(D), between the geometric nerves of two
crossed modules, preserves thin elements or, more simply, preserves thinness if, for each n, and
each thin n-simplex, t ∈ Ner(C)n, fn(t) is thin in Ner(D).

Remark: We should comment that preservation of thinness really devolves down to checking
that a map preserves thin 2-simplices. The thin 1-simplices are just the degenerate ones, so they
will be preserved by any simplicial map, whilst, above dimension 2, all simplices are thin, so
preservation is automatic!

We showed (Proposition 178) how a simplicial map, f : Ner(C) → Ner(D), induced the data
for a pseudo-functor,

F = (F,ϕ) : X (C)→ X (D).

(We will not need to use the detailed notation from there for the limited discussion that we will give
here, so will abuse notation enormously!) Translating that data, in the algebraic / combinatorial
format, we look at (p0, p0p2, p2; id) ∈ Ner(C) and obtain

f2(p0, p0p2, p2; id) = (f0(p0), f0(p0p2), f0(p2); (〈p2, p0〉, f0(p0p2)))
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with ∂〈p2, p0〉f0(p0p2) = f0(p0)f0(p2).

If f preserves thinness, then 〈p2, p0〉 is trivial, i.e., the identity in D, so f0 is a homomorphism,
as is f1, and, by the post-whiskering axiom, f1(pc) = f0(p)f1(c), so f is a (strict) morphism of
crossed modules, as required. �

Clearly, if f : C→ D is a crossed module morphism, then it preserves thinness (in all dimensions).
(Just check it.)

This raises an interesting question. Is there a simple example of a weak (and not strict)
morphism of crossed modules, having both f0 and f1 group homomorphisms? In such a case, all
the ∂〈p1, p2〉 and 〈∂c1, ∂c2〉 would be trivial, but would it be possible to have some 〈p1, p2〉 non-
trivial? The obvious place to look first would be with modules thought of as crossed modules, so
the various ∂ would be trivial.

The above more or less indicates what a strict morphism has that a weak one does not, from
the point of view of nerves. What about defining weak maps via cofibrant replacements? If we
start with a strict morphism, f : C → D, and a cofibrant replacement, q : Q → C, then there is
clearly a morphism,

fq : Q→ D,

which will be a weak map from C to D, or, more exactly, will be one if Q is the natural functorial
cofibrant replacement, and, more generally, will give a weak map, determined up to equivalence.
Conversely, given some g : Q → D, it will correspond to a strict map if g factors through q giving
a ‘complementary’ morphism, f : C → D, . . . . Uniqueness, etc, of the factorisation is left to you
to analyse.

Finally, what sort of papillon / butterfly corresponds to a strict morphism, f : C → C′? We
know that f corresponds to a pairing, 〈−,−〉 : P × P → C ′, which, here, is trivial. It follows that
the NE-SW extension of the papillon will be split, with, as a result, E ∼= C ′ o P , since 〈−,−〉 was
a factor set for it.

This gives a papillon:

C
κ

##GGGGGGGGG

∂

��

C ′

∂C′

��

ι

{{wwwwwwwww

C ′ o P

λ ##GGGGGGGGG

ρ
{{wwwwwwwww

P P ′

in which ρ is a split epimorphism.

Now we can go back. First the obvious definition:

Definition: A papillon, as above, in which the NE-SW extension is split (with given splitting)
will be called a split papillon.
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Suppose we have such a split papillon, with s : P → C ′ o P , the chosen splitting. (Of course,
as soon as we choose a splitting, we are choosing an isomorphism of the central object, E, of the
papillon and a semidirect product representation of it. Consequently, if we write C ′ o P for the
centre term of a papillon, we are not only identifying that group, but are specifying the splitting
(namely s(p) = (1, p)) and a host of other information. This does lead to a certain redundancy of
notation and, perhaps, of terminology, but, hopefully, is clearer in terms of the exposition.) The
decomposition as C ′ o P also gives us a set theoretic projection from C ′ o P to C ′, which we will
denote by d. (This satisfies

d((c′1, p1)(c′2, p2)) = c′1.
p1c′2,

whilst, of course, d(c′1, p1)d(c′2, p2) = c′1.c
′
2, so d is not a homomorphism. It is a derivation.) We

want to construct a morphism of crossed modules,

f : C→ C′.

There is an obvious f0 : P → P ′, given by λs, but what about an f1 : C → C ′?
There seem to be only a few possibilities handed to us if we are to use just the ‘building blocks’

provided. We know that the left ‘wing’ of the papillon commutes, so κ(c) = (k(c), ∂c) and perhaps
this mapping, k : C → C ′, is what we need.

Before we go further, however, we should look back at how we went from weak maps to ‘papil-
lons’. We took κ(c) = (f1(c)−1, ∂c), so that suggests that k(c) is not exactly what we want, rather
k(c)−1 should be the thing we look at.

(If we look at the fact that κ itself is a homomorphism, then k satisfies a derivation type
formula,

k(c2c1) = k(c2).∂c2k(c1),

rather than being a homomorphism. We are in the context of crossed modules, so action by a
boundary element, such as ∂c2, easily converts to conjugation, but the above seems to then end up
with the wrong order for things to cancel as we might hope. This again suggests that the idea of
the ‘inverse of k’ is a good one to follow up.)

Given this, we will bravely set f1(c) := k(c)−1 and charge into the attack! First, however, let
us make a cunning observation. The above choice looks good, as we said, since then

κ(c) = (f1(c)−1, ∂c)

as before, so
κ(c) = (f1(c)−1, 1)(1, ∂c) = ι(f1(c))−1.s(∂c).

Rearranging this gives
ι(f1(c)) = s(∂c)κ(c)−1,

we further note that (i) ι is a monomorphism, and (ii), and, in all generality, [ι(c′), κ(c)] = 1, since
ρι(c′) = 1 implies that

ι(c′)κ(c)ι(c′)−1 = κ(ρι(c
′)c) = κ(c).

(In case you are wondering, it should be noted, that we had previously checked this only for a
papillon coming from a weak map, so we did need to check it independently!)

Proposition 63 Given a split papillon, as above, defining f0 = λs and f1 given by ιf1(c) =
s(∂c)κ(c)−1, then (f1, f0) gives a morphism, f : C→ C′.
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Proof: We have to check three things:

(a) ∂f1 = f0∂;

(b) f1 is a homomorphism (as we have already checked that f0 is one);

(c) for all c ∈ C and p ∈ P ,
f1(pc) = f0(p)f1(c).

Starting with (a), we have
∂f1(c) = λιf1(c) = λs(∂c),

since λκ is trivial, hence ∂f1(c) = f0∂(c).
Now (b), let c1, c2 ∈ C,

ιf1(c2c1) = s∂(c2c1).κ(c2c1)−1

= s∂(c2)s∂(c1)κ(c1)−1κ(c2)−1.

(We know what we want this to be, so force it into the right shape with a rewrite.) It equals

s∂(c2)κ(c2)−1(κ(c2)s∂(c1).κ(c1)−1κ(c2)−1) = s∂(c2)κ(c2)−1.κ(c2).ιf1(c1).κ(c2)−1,

but κ and ι “commute”, as we saw, so this is ιf1(c2)ιf1(c1), as hoped for.
Finally (c), we take p ∈ P , c ∈ C

ιf1(pc) = s∂(pc).κ(pc)−1

= s(p∂c.p−1).κ(ρs(p)c)−1,

since p = ρs(p). We use the condition on κ relative to the action of the ρ(e)s to get that this is

s(ps(∂c)s(p)−1.(s(p)κ(c)−1s(p)−1) = s(p)(s(∂c).κ(c)−1)s(p)−1

= s(p)ιf1(c)s(p)−1.

We now invoke the condition on ι relative to the action of the λ(e)s. This becomes ι(λs(p)f1(c)),
i.e., ι(f0(p)f1(c)). Using that ι is a monomorphism, we get

f1(pc) = f0(p)f1(c),

as required. �

We thus have strict morphisms correspond to split papillons. To be complete in this, we must
note that a split papillon may have different splittings, so does a split papillon correspond to several
different weak morphisms? Clearly, if it does, then these should be equivalent / homotopic. This
is left to you to check up on and to investigate further. The papers, [106, 108] and [2], will give
some ideas about what to expect, but do not expect them to provide all the answers!

It should also be clear that a weak equivalence of crossed modules should correspond to a
papillon in which the NW-SE sequence is also exact. Noohi’s discussion in [108] goes into this, and
this is suggested as another investigation. His treatment does not take quite the same route
through the ideas as we have, so there are quite a few details to supply . . . over to you.
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in the Swiss Alps, volume 265 of Contemporary Mathematics, 99 – 127, AMS. 42, 43, 71, 97,
98, 165

[91] J. Lurie, 2009, Higher Topos Theory , number 170 in Annals of mathematics studies, Princeton
University Press, URL http://arxiv.org/abs/math.CT/0608040. 158, 162

[92] S. Mac Lane, 1967, Homology , number 114 in Grundlehren, Springer. 44, 77, 78, 83, 92

[93] S. Mac Lane, 1978, Categories for the Working Mathematician, number 5 in Graduate Texts,
Springer. 78, 79

[94] S. Mac Lane, Historical Note, J. Alg., 60, (1979), 319 – 320, appendix to D. F. Holt, An
interpretation of the cohomology groups, Hn(G,M), J. Alg. 60 (1979) 307-318. 44

[95] S. Mac Lane and J. H. C. Whitehead, On the 3-type of a complex , Proc. Nat. Acad. Sci.
U.S.A., 36, (1950), 41 – 48. 40, 87

[96] W. S. Massey, 1967, Algebraic Topology, an introduction, Harcourt, Brace & World. 136

[97] J. P. May, 1967, Simplicial objects in algebraic topology , number 11 in Math. Studies, van
Nostrand, Princeton. 23, 27, 30

[98] J. W. Milnor, Whitehead torsion, Bull. Amer. Math. Soc., 72, (1966), 358 – 426. 102, 103

[99] J. W. Milnor, 1971, Introduction to Algebraic K-theory , Annals of Math. Studies, Princeton
University Press. 37

[100] I. Moerdijk and J. Svensson, Algebraic classification of equivariant homotopy 2-types, part I.,
J. Pure Applied Alg., 89, (1993), 187 – 216. 195, 211, 212, 213

[101] J. C. Moore, 1956, Seminar in Algebraic Homotopy , Princeton. 80

http://arxiv.org/abs/math.CT/0608040


BIBLIOGRAPHY 233

[102] A. Mutlu and T. Porter, Free crossed resolutions from simplicial resolutions with given CW -
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[120] C. Soulé, Groupes opérants sur un complexe simplicial avec domain fondamental , C.R. Acad.
Sci. Paris, Sér A 276, (1973), 607–609. 111

[121] E. H. Spanier, 1966, Algebraic Topology , McGraw Hill. 129

[122] A. A. Suslin and M. Wodzicki, Excision in algebraic K-theory , The Annals of Mathematics,
136, (1992), 51 – 122. 116, 118, 132
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