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LL sequent calculus



  

Multiplicatives

Additives

Exponentials



  

Multiplicatives

Additives

Exponetials ...



  

Linear negation



  

In this tutorial, we will focus on MLL



  

Proof Nets
A graph syntax for proofs



  

Proof structures

For each node/link: premisses = entering edges, conclusions = exiting edges



  



  



  

example

Translate this sequent calculus proof. Start from axioms.... add links....



  

Proof Nets

Internal condition!



  



  

Correctness guarantees:

✔ Graph is image of a proof (sequentialization)
✔ Normalization terminates



  

The beauty of proof nets is
normalization



  

Normalization
 (local graph reductions!) 



  

MLL: properties of normalization 



  

Let us try out!



  Write a proof net with this conclusion... and 
normalize it



  

How we write a proof net of  these conclusions?

must type an edge conclusion of a par link, with premisses ....

must type an edge  conclusion of a tensor link, with premisses ....

Then we have to choose the axiom links!



  

Let us try one more.  First, write a proof net with this conclusion...

=

How we write a proof net? As before, all proof nets with the same conclusion,
 start with the same nodes (the formula  tree!)
What distinguishes different proofs are the axiom links
 

To distinguish the different occurrences of atoms, let us write indices:

In this case, we have two possible proofs, corresponding to two possible way to 
write axioms:
1,3  and 2,4
OR
1,4 and 2,3 

= 



  

In sequent calculus, they correspond to these two proofs (one uses exchange, one no)

parenthesis



  

Let us indicate the formula                                              with B (for boolean).
We call one proof true, and the other false...

We can feed one of our two values to a proof  which takes a boolean, and return a boolean. 

When we have a formula whose normal proofs are exactly two, we have a 
good candidate to code BOOLEANS   :) 

We know that the normal form  (i.e the result of computation) 
will be of type B...  Hence one of our two values.



  

Try to normalize one of the proofs of 

with the proof net which has conclusions 

and axiom links:
1,6
2,5
3,7
4,8 

What is the function coded by this proof net?



  

Sequentialization



  



  



  



  

a directed acyclic graph (dag) G is 
an oriented graph without (oriented) cycles. 

The transitive closure induces 
a strict partial order on the nodes of G:  

  a < b iff  a ← b (= there is an edge from b to a)

The skeleton of a dag G is the graph that has 
the same vertices as G and 

whose edges are the edges of G which are not transitive

(it is the canonical representation of the partial order) 

Memo:



  



  

IDEA

Which correctness ?

Di Giamberardino-Faggian, APAL08
Note: the original proof of sequentialization 
[Girard] uses empires



  

Parenthesis: if we focus on acylicity, 
Danos-Regnier criterion can be reformulated

 (in equivalent way)

 we can throw away MIX later
By requiring connectness



  

To accommodate additional edges,
we proceed in two steps:

1. partition the entering edges of a node into ports
2. add edges



  

1.

2.



  



  

Syntax revised- Now:



  



  

MEMO. A strict order is arborescent =
 each element has at most one predecessor 

If <_R is not arborescent, there is a link l,
with two (incomparable) predecessor



  

Add an edge m-->n:
 the order increases

But creates a cycle !?!

Means there is a switching 
path r between n and m 



  

Add an edge n-->m:
 the order increases

But creates a cycle !?!

Means there is a switching 
path r between n and m 

means in R  there is a switching 
path r'  between m and n



  

Add an edge n-->m:
 the order increases

But creates a cycle !?!

means in R  there is a switching 
path r'  between m and n

Means there is a switching 
path r between n and m 



  

Case 1:   r and r' do not have 2 edges which belong to the same port

a switching path r'  from n to m
switching path r from m to n 

m----->n + n------>m



  

Follow r from m to n.    Let c  be the first node whose port z contains both 
an edge of r and an edge of r'.

Follow r' from n to c.

Case 2a: r' enters in z    
               m----->c + c ------>m

Case 2b: r' enters in a different port
                m----->c + c ------>n + n <-- l + l -->m 
               



  

Moral:

if the order is not a tree there is such a configuration:

and we can always add an edge to increase the order
(while preserving correctness)
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