

Tutorial on
PROOF NETS

(Logic and Interaction 2012, week 2)

Claudia Faggian

LL sequent calculus

Multiplicatives

Additives

Exponentials

Multiplicatives

Additives

Exponetials ...

Linear negation

In this tutorial, we will focus on MLL

Proof Nets
A graph syntax for proofs

Proof structures

For each node/link: premisses = entering edges, conclusions = exiting edges

example

Translate this sequent calculus proof. Start from axioms.... add links....

Proof Nets

Internal condition!

Correctness guarantees:

✔ Graph is image of a proof (sequentialization)
✔ Normalization terminates

The beauty of proof nets is
normalization

Normalization
 (local graph reductions!)

MLL: properties of normalization

Let us try out!

 Write a proof net with this conclusion... and
normalize it

How we write a proof net of these conclusions?

must type an edge conclusion of a par link, with premisses

must type an edge conclusion of a tensor link, with premisses

Then we have to choose the axiom links!

Let us try one more. First, write a proof net with this conclusion...

=

How we write a proof net? As before, all proof nets with the same conclusion,
 start with the same nodes (the formula tree!)
What distinguishes different proofs are the axiom links

To distinguish the different occurrences of atoms, let us write indices:

In this case, we have two possible proofs, corresponding to two possible way to
write axioms:
1,3 and 2,4
OR
1,4 and 2,3

=

In sequent calculus, they correspond to these two proofs (one uses exchange, one no)

parenthesis

Let us indicate the formula with B (for boolean).
We call one proof true, and the other false...

We can feed one of our two values to a proof which takes a boolean, and return a boolean.

When we have a formula whose normal proofs are exactly two, we have a
good candidate to code BOOLEANS :)

We know that the normal form (i.e the result of computation)
will be of type B... Hence one of our two values.

Try to normalize one of the proofs of

with the proof net which has conclusions

and axiom links:
1,6
2,5
3,7
4,8

What is the function coded by this proof net?

Sequentialization

a directed acyclic graph (dag) G is
an oriented graph without (oriented) cycles.

The transitive closure induces
a strict partial order on the nodes of G:

 a < b iff a ← b (= there is an edge from b to a)

The skeleton of a dag G is the graph that has
the same vertices as G and

whose edges are the edges of G which are not transitive

(it is the canonical representation of the partial order)

Memo:

IDEA

Which correctness ?

Di Giamberardino-Faggian, APAL08
Note: the original proof of sequentialization
[Girard] uses empires

Parenthesis: if we focus on acylicity,
Danos-Regnier criterion can be reformulated

 (in equivalent way)

 we can throw away MIX later
By requiring connectness

To accommodate additional edges,
we proceed in two steps:

1. partition the entering edges of a node into ports
2. add edges

1.

2.

Syntax revised- Now:

MEMO. A strict order is arborescent =
 each element has at most one predecessor

If <_R is not arborescent, there is a link l,
with two (incomparable) predecessor

Add an edge m-->n:
 the order increases

But creates a cycle !?!

Means there is a switching
path r between n and m

Add an edge n-->m:
 the order increases

But creates a cycle !?!

Means there is a switching
path r between n and m

means in R there is a switching
path r' between m and n

Add an edge n-->m:
 the order increases

But creates a cycle !?!

means in R there is a switching
path r' between m and n

Means there is a switching
path r between n and m

Case 1: r and r' do not have 2 edges which belong to the same port

a switching path r' from n to m
switching path r from m to n

m----->n + n------>m

Follow r from m to n. Let c be the first node whose port z contains both
an edge of r and an edge of r'.

Follow r' from n to c.

Case 2a: r' enters in z
 m----->c + c ------>m

Case 2b: r' enters in a different port
 m----->c + c ------>n + n <-- l + l -->m

Moral:

if the order is not a tree there is such a configuration:

and we can always add an edge to increase the order
(while preserving correctness)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

