Abstract Machines for Argumentation Logic and Interactions 2012, Week 2

Kurt Ranalter

SIAG Bolzano/Bozen

CIRM, 10/02/2012

Overview

- Introduction
- 2 Abstract machines
- 3 Argumentation
- 4 Conclusion

Summary of content

- Related work and motivations
- Aim of talk and contributions

Summary of content

- Related work and motivations
- Aim of talk and contributions

Lecomte and Quatrini

- Ludics and its applications to natural language semantics (in LNAI 5514, 2009)
- A theory of meaning that is based on ludics
 - convergence via daimon
 - meaning via orthogonality
- Match between rules of ludics and moves in dialogue
 - rules of ludics: positive vs negative
 - roles in dialogue: speaker vs hearer
 - actions in dialogue: sender vs receiver
- Put these aspects together by means of normalisation

Curien and Herbelin

- Abstract machines for dialogue games (in Panoramas et Synthèses 27, 2009)
- Proofs in ludics regarded as abstract Böhm trees
- Various abstract machines for computing with ABTs

Curien and Herbelin

- Abstract machines for dialogue games (in Panoramas et Synthèses 27, 2009)
- Proofs in ludics regarded as abstract Böhm trees
- Various abstract machines for computing with ABTs

Combining these strands

- Want to extend duality to abstract Böhm trees
 - rules of ludics: positive vs negative
 - roles in dialogue: speaker vs hearer
 - actions in dialogue: sender vs receiver
 - abstract Böhm trees: replies vs queries
- Towards computational account for modelling dialogue
 - normalisation by means of geometric abstract machine
- ABTs more expressive than MLL-based variant of ludics

Basaldella and Faggian

- Ludics with repetitions: exponentials, interactive types and completeness (in LMCS 7, 2011)
- An extension of ludics that deals with exponentials
- Add pointers to trace occurrences of subformulae

Basaldella and Faggian

- Ludics with repetitions: exponentials, interactive types and completeness (in LMCS 7, 2011)
- An extension of ludics that deals with exponentials
- Add pointers to trace occurrences of subformulae

Relation to our framework

- Relevant differences mostly of technical nature
 - normalisation via view abstract machine
 - pointer interaction not a primary concern
 - · main focus on repetition of actions
- Should be possible to translate all of our examples
- Pointer interaction one of the central topics of this talk

Summary of content

- Sketch of formal definitions
- How does GAM actually work?

Summary of content

- Sketch of formal definitions
- How does GAM actually work?

General considerations

- Operational account of concepts from game semantics
- Crisp graphical representation for abstract Böhm trees
 - interaction may be seen as interleaved tree traversal
 - graphical representation vs concrete implementation
- Small number of rules leads to compact implementation
- Rapid prototyping as main benefit of implementation
 - a potential framework for developing applications
 - why not abstract Böhm trees as data structures?

Abstract Böhm trees

- Two types of moves
 - queries: a_0, a_2, a_4, a_6
 - replies: a_1, a_3, a_5, a_7
- Pointer conditions
 - from reply to query
 - only within branch
- Branching condition
 - only after replies
- (Counter-)strategies
 - (*) is counterstrategy
 - strategy when 1) $a_0 = \star$ and 2) no pointers to \star

Geometric abstract machine

$$\frac{hd(\Gamma) = \{\overline{2n} \leftarrow \mathbf{q}[a, -]\}}{\Gamma \mapsto \Gamma\{2n \leftarrow a\}} (2n)_{f}$$

$$\frac{hd(\Gamma) = \{2n - 1 \leftarrow \mathbf{q}\}, \phi(\mathbf{q}) = [a, \kappa]}{\Gamma \mapsto \Gamma\{\overline{2n} \leftarrow \mathbf{q}[a, \kappa]\}} (\overline{2n})$$

$$\frac{hd(\Gamma) = \{\overline{2n} \leftarrow \mathbf{q}[a, \iota]\}, \pi(pop^{\iota}(\mathbf{q})) = 2k - 1, \Gamma \bullet \overline{2k - 1} = \mathbf{r}}{\Gamma \mapsto \Gamma\{2n \leftarrow \mathbf{r}a\}} (2n)_{b}$$

$$\frac{hd(\Gamma) = \{2n \leftarrow \mathbf{q}\}, \psi(\mathbf{q}) = [a, \kappa]}{\Gamma \mapsto \Gamma\{\overline{2n + 1} \leftarrow \mathbf{q}[a, \kappa]\}} (\overline{2n + 1})$$

$$\frac{hd(\Gamma) = \{\overline{2n + 1} \leftarrow \mathbf{q}[a, \iota]\}, \pi(pop^{\iota}(\mathbf{q})) = 2k, \Gamma \bullet \overline{2k} = \mathbf{r}}{\Gamma \mapsto \Gamma\{2n \leftarrow \mathbf{r}a\}}$$

$$\frac{hd(\Gamma) = \{\overline{2n + 1} \leftarrow \mathbf{q}[a, \iota]\}, \pi(pop^{\iota}(\mathbf{q})) = 2k, \Gamma \bullet \overline{2k} = \mathbf{r}}{\Gamma \mapsto \Gamma\{2n \leftarrow \mathbf{r}a\}}$$

GAM at work: outline


```
\frac{1}{2} * [a1, -]
2 a1
\overline{3} a1[a2,0]
3 * [a1, -]a2
4 *[a1,-]a2[a3,0]
4 a1[a2,0]a3
5 a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\overline{3} a1[a2,0]
3 * [a1, -]a2
\overline{4} * [a1, -] a2 [a3, 0]
4 a1[a2,0]a3
\overline{5} a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\frac{1}{2} * [a1, -]
2 a1
\overline{3} a1[a2,0]
3 * [a1, -]a2
\frac{1}{4} * [a1, -]a2[a3, 0]
4 a1[a2,0]a3
5 a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\bar{3} a1[a2,0]
3 * [a1, -]a2
\overline{4} * [a1, -] a2 [a3, 0]
4 a1[a2,0]a3
\overline{5} a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\overline{3} a1[a2,0]
3 * [a1, -]a2
\frac{1}{4} * [a1, -]a2[a3, 0]
4 a1[a2,0]a3
5 a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\bar{3} a1[a2,0]
3 * [a1, -]a2
4 *[a1,-]a2[a3,0]
4 a1[a2,0]a3
\overline{5} a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\bar{2} * [a1, -]
2 a1
\overline{3} a1[a2,0]
3 * [a1, -]a2
\overline{4} * [a1, -] a2 [a3, 0]
4 a1[a2,0]a3
5 a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\bar{3} a1[a2,0]
3 * [a1, -]a2
\overline{4} * [a1, -] a2 [a3, 0]
4 a1[a2,0]a3
\overline{5} a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\overline{3} a1[a2,0]
3 * [a1, -]a2
4 *[a1,-]a2[a3,0]
4 a1[a2,0]a3
5 a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\bar{3} a1[a2,0]
3 * [a1, -]a2
\overline{4} * [a1, -] a2 [a3, 0]
4 a1[a2,0]a3
\overline{5} a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} *[a1,-]a2[a3,0]
6 a1[a2,0]a3[a2,1]...
```



```
\overline{2} * [a1, -]
2 a1
\overline{3} a1[a2,0]
3 * [a1, -]a2
\overline{4} * [a1, -] a2 [a3, 0]
4 a1[a2,0]a3
5 a1[a2,0]a3[a2,1]
5 * [a1, -]a2
\overline{6} * [a1, -] a2 [a3, 0]
6 a1[a2,0]a3[a2,1]...
```


- 1 *
- $\overline{2} * [a1, -]$
- **2** a1
- $\overline{3}$ a1[a2,0]
- 3 * [a1, -]a2
- 4 *[a1,-]a2[a3,0]
- 4 a1[a2,0]a3
- 5 a1[a2,0]a3[a2,1]
- 5 * [a1, -]a2
- $\overline{6} * [a1, -] a2 [a3, 0]$
- 6 a1[a2,0]a3[a2,1]...

Summary of content

- Example dialogue about burden of proof
- Synthesised dialogue and formalisation

Summary of content

- Example dialogue about burden of proof
- Synthesised dialogue and formalisation

Prakken, Reed and Walton

- Dialogues about the burden of proof (in ICAIL, 2005)
- Combine persuasion dialogue with burden of proof
 - argumentation schemes, critical questions
 - technical solution based on dialogue levels

Summary of content

- Example dialogue about burden of proof
- Synthesised dialogue and formalisation

Prakken, Reed and Walton

- Dialogues about the burden of proof (in ICAIL, 2005)
- Combine persuasion dialogue with burden of proof
 - argumentation schemes, critical questions
 - technical solution based on dialogue levels

Use of pointer interaction

- Embedded dialogues and concept of backtracking
 - backtracking: returning to earlier point in dialogue
- Dialogue as product of normalisation via GAM

Example of legal dispute

```
U₁:CLAIM C
 V₁:WHY C
\lceil u_2 : C \text{ SINCE } says(e, C) \land expert(e, C)
 v_2:WHY \neg biased(e)
 u<sub>3</sub>:WHY biased(e)
\lceil v_3 : BoP \ (\neg biased(e), u) \ SINCE \ \neg biased(e) \rightarrow trusted(e)
 u_4:WHY \neg biased(e) \rightarrow trusted(e)
 v_4:WHY \neg(\neg biased(e) \rightarrow trusted(e))
 u_5:¬(\neg biased(e) \rightarrow trusted(e)) SINCE presumed(\neg biased(e))
_{\mathsf{V}_{\mathsf{5}}}:RETRACT \neg biased(e) \rightarrow trusted(e)
 v_6: biased(e) SINCE paid(e, c) \land testifies(e, c)
LUB:CONCEDE biased(e)
 U7:RETRACT C
```

u's & v's point of view

Conclusion

General considerations

- Dialogue regarded as product of interaction
- Pointer interaction crucial for backtracking
- Lots of other applications indeed possible

Conclusion

General considerations

- Dialogue regarded as product of interaction
- Pointer interaction crucial for backtracking
- Lots of other applications indeed possible

Ongoing and future work

- Syntax versus semantics
 - grammars as abstract Böhm trees
 - compositional theory of meaning?
- Analysis versus synthesis
 - modular approach to abstract Böhm trees
 - abstract Böhm trees as data structures?
- Rationality, decision making
 - implementation of selection functions?

