Strong bounds for light linear logic by levels

Matthieu Perrinel

LIP (ENS Lyon)

31 january 2011

Implicit computational complexity

Capture a complexity class by syntactic restriction on a model of computation

Implicit computational complexity

Capture a complexity class by syntactic restriction on a model of computation

Why?

Bound on the execution of a program

Implicit computational complexity

Capture a complexity class by syntactic restriction on a model of computation

Why?

Bound on the execution of a program

- The complexity class :
- The model of computation :
- The syntactic restriction :

Implicit computational complexity

Capture a complexity class by syntactic restriction on a model of computation

Why?

Bound on the execution of a program

- The complexity class : Polynomial time
- The model of computation :
- The syntactic restriction :

Implicit computational complexity

Capture a complexity class by syntactic restriction on a model of computation

Why?

Bound on the execution of a program

- The complexity class : Polynomial time
- The model of computation : λ calculus
- The syntactic restriction :

Implicit computational complexity

Capture a complexity class by syntactic restriction on a model of computation

Why?

Bound on the execution of a program

- The complexity class : Polynomial time
- ullet The model of computation : λ calculus
- The syntactic restriction : type system

Implicit computational complexity

Capture a complexity class by syntactic restriction on a model of computation

Why?

Bound on the execution of a program

<u>Here</u>

- The complexity class : Polynomial time
- The model of computation : $\frac{\lambda \text{ calculus } LL}{\lambda}$ proof nets
- The syntactic restriction: type system LL subsystem

- Linear logic and complexity
 - Linear logic
 - Origins of complexity
- Existing systems
 - LLL
 - L⁴
 - L₀⁴
- 3 Context semantics (Dal Lago 2006)
 - A notion of future duplicates
 - Capturing "duplicates" using paths
- 4 Strong bound for LLL, L^4 , L_0^4
 - Strong bound LLL
 - Strong bound for L⁴
 - Strong bound for L₀⁴
 - Strong bound DLALL₀

Types in system F

$$A,B ::= X \mid A \Rightarrow B \mid A \land B \mid \forall X,A \mid \exists X,A$$

Types in system F

$$A, B ::= X \mid A \Rightarrow B \mid A \wedge B \mid \forall X, A \mid \exists X, A$$

$$\mathbb{N} \qquad \forall X, (X \Rightarrow X) \Rightarrow X \Rightarrow X$$

$$\underline{n} \qquad \lambda f. \lambda x. \underbrace{f(f(...(f \times)))}_{n \text{ applications of } f} : \mathbb{N}$$

Types in system F

$$A, B ::= X \mid A \Rightarrow B \mid A \wedge B \mid \forall X, A \mid \exists X, A$$

$$\mathbb{N} \qquad \forall X, (X \Rightarrow X) \Rightarrow X \Rightarrow X$$

$$\underline{n} \qquad \lambda f.\lambda x. \underbrace{f(f(...(f \times)))}_{n \text{ applications of } f} : \mathbb{N}$$

$$+ 1 \qquad \lambda n.\lambda f.\lambda x.n \ f(f \times) : \mathbb{N} \Rightarrow \mathbb{N}$$

$$\exp \qquad \qquad \lambda n.n \ 2 : \mathbb{N} \Rightarrow \mathbb{N}$$

Types in system F

$$A, B ::= X \mid A \Rightarrow B \mid A \wedge B \mid \forall X, A \mid \exists X, A$$

$$\mathbb{N} \qquad \forall X, (X \Rightarrow X) \Rightarrow X \Rightarrow X$$

$$\underline{n} \qquad \lambda f.\lambda x. \underbrace{f(f(...(f \ x)))}_{n \text{ applications of } f} : \mathbb{N}$$

$$+ 1 \quad \lambda n.\lambda f.\lambda x. n \ f(f \ x) : \mathbb{N} \Rightarrow \mathbb{N}$$

$$exp \qquad \lambda n.n \ 2 : \mathbb{N} \Rightarrow \mathbb{N}$$

Typable in system $F \Rightarrow$ strongly normalizes

Types in system F

$$A, B ::= X \mid A \Rightarrow B \mid A \wedge B \mid \forall X, A \mid \exists X, A$$

$$\mathbb{N} \qquad \forall X, (X \Rightarrow X) \Rightarrow X \Rightarrow X$$

$$\underline{n} \qquad \lambda f.\lambda x. \underbrace{f(f(...(f \ x)))}_{n \text{ applications of } f} : \mathbb{N}$$

$$+ 1 \quad \lambda n.\lambda f.\lambda x. n \ f(f \ x) : \mathbb{N} \Rightarrow \mathbb{N}$$

$$exp \qquad \lambda n.n \ 2 : \mathbb{N} \Rightarrow \mathbb{N}$$

Which complexity?

Types in system F

$$A, B ::= X \mid A \Rightarrow B \mid A \wedge B \mid \forall X, A \mid \exists X, A$$

$$\mathbb{N} \qquad \forall X, (X \Rightarrow X) \Rightarrow X \Rightarrow X$$

$$\underline{n} \qquad \lambda f.\lambda x. \underbrace{f(f(...(f \times)))}_{n \text{ applications of } f} : \mathbb{N}$$

$$+ 1 \qquad \lambda n.\lambda f.\lambda x.n \ f(f \times) : \mathbb{N} \Rightarrow \mathbb{N}$$

$$\exp \qquad \qquad \lambda n.n \ 2 : \mathbb{N} \Rightarrow \mathbb{N}$$

Which complexity? We need a refinement

LL formulas

$$A, B ::= X \mid$$

$$A \Rightarrow B \mid A \land B \mid \exists X, A \mid \forall X, A$$

LL formulas

$$A, B ::= X \mid$$

$$A \longrightarrow B \mid A \wedge B \mid \exists X, A \mid \forall X, A$$

$$A \Rightarrow B := !A \multimap B$$

LL formulas

$$A, B ::= X \mid A \longrightarrow B \mid A \wedge B \mid \exists X, A \mid \forall X, A$$

$$A \Rightarrow B := !A \multimap B$$

LL formulas

$$A, B ::= X \mid A \rightarrow B \mid A \wedge B \mid \exists X, A \mid \forall X, A \mid A \Rightarrow B := A \rightarrow B$$

$$\forall A, A \multimap (A \land A)$$
 X

dereliction
$$\forall A, !A \multimap A$$
 \checkmark duplication $\forall A, !A \multimap (!A \land !A)$ \checkmark promotion $A \vdash B \rightsquigarrow !A \vdash !B$ \checkmark digging $\forall A, !A \multimap !!A$

LL formulas

$$A, B ::= X \mid A \mid A^{\perp} \vee B \mid A \wedge B \mid \exists X, A \mid \forall X, A$$

 $A \Rightarrow B := A \rightarrow B \quad A \rightarrow B := A^{\perp} \vee B$

$$\forall A, A \multimap (A \land A)$$

dereliction
$$\forall A, !A \multimap A$$
 \checkmark duplication $\forall A, !A \multimap (!A \land !A)$ \checkmark promotion $A \vdash B \leadsto !A \vdash !B$ \checkmark digging $\forall A, !A \multimap !!A$

LL formulas

$$A, B ::= X \mid X^{\perp} \mid !A \mid ?A \mid A \quad \lor B \mid A \land B \mid \exists X, A \mid \forall X, A$$
$$A \Rightarrow B := !A \multimap B \qquad A \multimap B := A^{\perp} \lor B$$

$$\forall A, A \multimap (A \land A)$$
 X

dereliction
$$\forall A, !A \multimap A$$
 \checkmark duplication $\forall A, !A \multimap (!A \land !A)$ \checkmark promotion $A \vdash B \rightsquigarrow !A \vdash !B$ \checkmark digging $\forall A, !A \multimap !!A$

LL formulas

$$A, B ::= X \mid X^{\perp} \mid !A \mid ?A \mid A \quad \Im B \mid A \otimes B \mid \exists X, A \mid \forall X, A$$
$$A \Rightarrow B := !A \multimap B \qquad A \multimap B := A^{\perp} \Im B$$

$$\forall A, A \multimap (A \otimes A)$$
 X

dereliction
$$\forall A, !A \multimap A$$
 \checkmark duplication $\forall A, !A \multimap (!A \otimes !A)$ \checkmark promotion $A \vdash B \leadsto !A \vdash !B$ \checkmark digging $\forall A, !A \multimap !!A$

Proof net \simeq syntactic tree + information on duplication

Proof net \simeq syntactic tree + information on duplication

Proof net \simeq syntactic tree + information on duplication

Cut elimination

Cut elimination

Reason for non-normalization?

Reason for non-normalization?

Self application?

Reason for non-normalization?

• Self application? **X** The complexity disappears with the box.

- Self application? **X** The complexity disappears with the box.
- Self duplication?

- Self application? **X** The complexity disappears with the box.
- ullet Self duplication? \sim Too vague to be a criterium

- Self application? **X** The complexity disappears with the box.
- ullet Self duplication? \sim Too vague to be a criterium.
- Problem of strata?

- Self application? **X** The complexity disappears with the box.
- ullet Self duplication? \sim Too vague to be a criterium.
- Problem of strata? ✓ Stratified ⇒ elementary time

Dependence control

Reduces in exponential time

Dependence control

Reduces in exponential time

Solution

At most one auxiliary door by box

Dependence control

Reduces in exponential time

Solution

At most one auxiliary door by box + stratification \Rightarrow Poly time

Stratification: Neither digging, nor dereliction (?D links).

Stratification: Neither digging, nor dereliction (?D links).

Stratification: Neither digging, nor dereliction (?D links)

Stratification: Neither digging, nor dereliction (?D links)

Boxes = duplication, no relation a priori with stratification.

$$\S A \multimap \S B \equiv \S (A \multimap B)$$

$$\S A \multimap \S B \equiv \S (A \multimap B)$$

$$\S A \multimap \S B \equiv \S (A \multimap B)$$

$$\S A \multimap \S B \equiv \S (A \multimap B)$$

$$\S A \multimap \S B \equiv \S (A \multimap B)$$

L_0^4 (Baillot and Mazza 2010)

Stratification : The \S are moved up.

$$\S(\S X \multimap Y) \leadsto (2.X \multimap 1.Y)$$

Logic systems

$$\begin{array}{ccc}
 & & & & \\
?D & & & \\
?A^{\perp} \downarrow & & \downarrow \S A
\end{array}$$

$$\begin{array}{ccc}
 & & & & \\
?D & & +1 \\
?0.A^{\perp} \downarrow & & \downarrow 1.A
\end{array}$$

LLL

Weak bound ✓ Strong bound ✓

L^4

Weak bound ✓ Strong bound?

$$L_0^4$$

Weak bound ? Strong bound ?

Logic systems

$$\begin{array}{ccc}
 & & & & \\
?D & & & \\
?A^{\perp} \downarrow & & \downarrow \S A
\end{array}$$

$$\begin{array}{ccc}
\nearrow ax \\
?D & +1 \\
?0.A^{\perp} \downarrow & \downarrow 1.A
\end{array}$$

LLL

Weak bound ✓ Strong bound ✓

I 4

Weak bound ✓ Strong bound?

$$L_0^4$$

Weak bound 🗸

Strong bound?

	Logic systems	Type systems
$ \begin{bmatrix} $	LLL Weak bound ✓ Strong bound ✓	DLAL Weak bound ✓ Strong bound ✓
?D § ?A [⊥] ↓ ↓§A	L ⁴ Weak bound ✓ Strong bound ?	
$ \begin{array}{ccc} & & & \\ ?D & & +1 \\ ?0.A^{\perp} \downarrow & & \downarrow 1.A \end{array} $	L ₀ ⁴ Weak bound ✓ Strong bound ?	

	Logic systems	Type systems
$ \begin{bmatrix} $	LLL Weak bound ✓ Strong bound ✓	DLAL Weak bound ✓ Strong bound ✓
$ \begin{array}{ccc} & & & & \\ ?D & & & \\ ?A^{\perp} \downarrow & & \downarrow \S A \end{array} $	L ⁴ Weak bound ✓ Strong bound ?	
$ \begin{array}{ccc} & & & \\ ?D & & +1 \\ ?0.A^{\perp} \downarrow & & \downarrow 1.A \end{array} $	L ₀ ⁴ Weak bound ✓ Strong bound ?	DLALL ₀

	Logic systems	Type systems
$ \begin{array}{c c} & ax \\ ?P & & \S \end{array} $ $?A^{\perp} \downarrow \qquad \downarrow \S A$	LLL Weak bound ✓ Strong bound ✓	DLAL Weak bound ✓ Strong bound ✓
$ \begin{array}{ccc} & & & & \\ ?D & & & \\ ?A^{\perp} \downarrow & & \downarrow \S A \end{array} $	L ⁴ Weak bound ✓ Strong bound ?	
$ \begin{array}{ccc} & & & & \\ ?D & & +1 \\ ?0.A^{\perp} \downarrow & & \downarrow 1.A \end{array} $	L ₀ ⁴ Weak bound ✓ Strong bound ?	DLALL ₀ Weak bound ? Strong bound ?

	Logic systems	Type systems
$ \begin{array}{c c} & & & \\ ?P & & & \\ ?A^{\perp} \downarrow & & \downarrow \S A \end{array} $	LLL Weak bound ✓ Strong bound ✓	DLAL Weak bound ✓ Strong bound ✓
$ \begin{array}{ccc} & & & & \\ ?D & & & \\ ?A^{\perp} \downarrow & & \downarrow \S A \end{array} $	L ⁴ Weak bound ✓ Strong bound ?	
$ \begin{array}{ccc} & & & & \\ ?D & & +1 \\ ?0.A^{\perp} \downarrow & & \downarrow 1.A \end{array} $	L ₀ ⁴ Weak bound ✓ Strong bound ?	DLALL ₀ Weak bound ? Strong bound ?

	Logic systems	Type systems
$ \begin{array}{c c} & ax \\ ?P & & \S \end{array} $ $?A^{\perp} \downarrow \qquad \downarrow \S A$	LLL Weak bound ✓ Strong bound ✓	DLAL Weak bound ✓ Strong bound ✓
$ \begin{array}{ccc} & & & & \\ ?D & & & \\ ?A^{\perp} \downarrow & & \downarrow \S A \end{array} $	L ⁴ Weak bound ✓ Strong bound?	
$ \begin{array}{ccc} & & & \\ ?D & & +1 \\ ?0.A^{\perp} \downarrow & & \downarrow 1.A \end{array} $	L ₀ ⁴ Weak bound ✓ Strong bound ?	DLALL ₀ Weak bound ? Strong bound ?

Proving a strong bound

Technique to prove a bound

Bound on reduction = quantity decreasing for each reduction

- Linear bound for MALL: size of the net
- Depth by depth strategy for LLL: size at depth i

Proving a strong bound

Technique to prove a bound

Bound on reduction = quantity decreasing for each reduction

- Linear bound for MALL: size of the net
- Depth by depth strategy for LLL: size at depth i
- Any strategy for L^4 : seems that everything increases

Proving a strong bound

Technique to prove a bound

Bound on reduction = quantity decreasing for each reduction

- Linear bound for MALL: size of the net
- Depth by depth strategy for LLL : size at depth i
- Any strategy for L^4 : seems that everything increases

Solution

Anticipate. Consider all the possible duplicates of each link.

Duplicates of $B: \{1, 2\}$?

Duplicates of $B: \{1, 2.1, 2.2\}$

Duplicates of B'?

• Duplicates of B', in the duplicate 1 of $B = \{1, 2\}$

- Duplicates of B', in the duplicate 1 of $B = \{1, 2\}$
- ullet Duplicates of B', in the duplicate 2.1 of $B=\{arepsilon\}$

- Duplicates of B', in the duplicate 1 of $B = \{1, 2\}$
- Duplicates of B', in the duplicate 2.1 of $B = \{\varepsilon\}$
- Duplicates of B', in the duplicate 2.2 of $B = \{\varepsilon\}$

- Duplicates of B', in the duplicate 1 of $B = \{1, 2\}$
- Duplicates of B', in the duplicate 2.1 of $B = \{\varepsilon\}$
- Duplicates of B', in the duplicate 2.2 of $B = \{\varepsilon\}$

Duplicates of B': $\{\varepsilon \circ 2.1, \varepsilon \circ 2.2, 1 \circ 1, 2 \circ 1\}$

- Duplicates of B', in the duplicate 1 of $B = \{1, 2\}$
- Duplicates of B', in the duplicate 2.1 of $B = \{\varepsilon\}$
- Duplicates of B', in the duplicate 2.2 of $B = \{\varepsilon\}$

Duplicates of B': $\{\varepsilon \circ 2.1, \varepsilon \circ 2.2, 1 \circ 1, 2 \circ 1\}$

Context

$$C_G = E_G \times \mathcal{P} \times \mathcal{T} \times \{+, -\}$$

- $e \in E_G$ the edge we are on
- ullet $U \in \mathcal{P}$ potential for e: duplicate for every box containing e
- ullet $V\in\mathcal{T}$ trace : history of the path
- $s \in \{+, -\}$: direction we are going

$$(e, U, V, +) \rightsquigarrow (f, U, V, -)$$

$$(e, U, V, +) \rightsquigarrow (g, U, \mathcal{P}_I :: V, +)$$

 $(f, U, V, +) \rightsquigarrow (g, U, \mathcal{P}_F :: V, +)$

$$(e, U, V, +) \rightsquigarrow (f, U, V, -)$$

 $(g, U, \mathcal{P}_r :: V, -) \rightsquigarrow (f, U, V, -)$

copy

$$t \in R_G(B, U)$$
 if $(principal(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, +)$

Dal Lago 2006

copy

 $t \in R_G(B, U)$ if $(principal(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, +)$

U canonical potential of B

 $U \in L_G$ if composed of a copy for each box containing B.

Dal Lago 2006

сору

 $t \in R_G(B, U)$ if $(principal(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, +)$

U canonical potential of B

 $U \in L_G$ if composed of a copy for each box containing B.

Dal Lago's theorem

 $W_G \leq \max \text{ reduction length} \leq T_G \leq poly(\max_{B,U}(|R_G(B,U)|))$

$$|R_G(B,U)| = |\{t/(\mathit{princ}(B),U,!_t,+) \mapsto^* (e,W,!_\epsilon,_)\}|$$

Dependence control

$$|R_G(B,U)| = |\{t/(princ(B),U,!_t,+) \mapsto^* (e,W,!_\epsilon,_)\}|$$

Dependence control

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

 $\leq |\{(e, W)/e \in G\}|$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, Then $|U| + |V|_{!,?,\S} = |U'| + |V'|_{!,?,\S}$.

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

 $\leq |\{(e, W)/e \in G\}|$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, Then $|U| + |V|_{!,?,\S} = |U'| + |V'|_{!,?,\S}$.

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, |W| = |U|\}|$$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, Then $|U| + |V|_{!,?,\S} = |U'| + |V'|_{!,?,\S}$.

$$|R_{G}(B, U)| = |\{t/(princ(B), U, !_{t}, +) \mapsto^{*} (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, |W| = |U|\}|$$

$$\leq |G| * max_{\partial(e) = \partial(B)} |L_{G}(e)|$$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, Then $|U| + |V|_{!,?,\S} = |U'| + |V'|_{!,?,\S}$.

$$|R_{G}(B, U)| = |\{t/(princ(B), U, !_{t}, +) \mapsto^{*} (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, |W| = |U|\}|$$

$$\leq |G| * max_{\partial(e)=\partial(B)}|L_{G}(e)|$$

$$max_{\partial(B)=d}|R_{G}(B, U)| \leq |G| * max_{\partial(e)=d}|L_{G}(e)|$$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, Then $|U| + |V|_{!,?,\S} = |U'| + |V'|_{!,?,\S}$.

$$|R_{G}(B, U)| = |\{t/(princ(B), U, !_{t}, +) \mapsto^{*} (e, W, !_{e}, .)\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, |W| = |U|\}|$$

$$\leq |G| * max_{\partial(e) = \partial(B)} |L_{G}(e)|$$

$$max_{\partial(B) = d} |R_{G}(B, U)| \leq |G| * max_{\partial(e) = d} |L_{G}(e)|$$

$$max_{\partial(B) = d} |R_{G}(B, U)| \leq |G| * (max_{\partial(B) < d} |R_{G}(B, U)|)^{d}$$

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

Dependence control

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

Dependence control

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, do we have $I(e) + |V|_{1,?,\S} = I(f) + |V'|_{!,?,\S}$?

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

 $\leq |\{(e, W)/e \in G\}|$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, $\frac{I(e) + |V|_{!,?,\S}}{I(e) + |V|_{!,?,\S}}$

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

 $\leq |\{(e, W)/e \in G\}|$

Doors of a same box with different levels

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, $\frac{I(e) + |V|_{!,?,\S}}{I(e) + |V|_{!,?,\S}} = \frac{I(f) + |V'|_{!,?,\S}}{I(f) + I(f)}$

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

 $\leq |\{(e, W)/e \in G\}|$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, $\frac{I(e) + |V|_{!,?,\S}}{I(e) + |V|_{!,?,\S}} = \frac{I(f) + |V'|_{!,?,\S}}{I(e) + I(e)}$

$$|R_G(B, U)| = |\{t/(princ(B), U, !_t, +) \mapsto^* (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, I(e) = I(B)\}|$$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, $\frac{I(e) + |V|_{!,?,\S}}{I(e) + |V|_{!,?,\S}} = \frac{I(f) + |V'|_{!,?,\S}}{I(e) + I(e)}$

$$|R_{G}(B, U)| = |\{t/(princ(B), U, !_{t}, +) \mapsto^{*} (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, I(e) = I(B)\}|$$

$$\leq |G| * max_{I(e)=I(B)}|L_{G}(e)|$$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, $\frac{I(e) + |V|_{!,?,\S}}{I(e) + |V|_{!,?,\S}} = \frac{I(f) + |V'|_{!,?,\S}}{I(e) + I(e)}$

$$|R_{G}(B, U)| = |\{t/(princ(B), U, !_{t}, +) \mapsto^{*} (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, I(e) = I(B)\}|$$

$$\leq |G| * max_{I(e)=I(B)}|L_{G}(e)|$$

$$max_{I(B)=d}|R_{G}(B, U)| \leq |G| * max_{I(e)=d}|L_{G}(e)|$$

Dependence control

The correspondance $t \mapsto (e, W)$ is injective

Stratification

If
$$(e, U, V, _) \mapsto (f, U', V', _)$$
, $\frac{I(e) + |V|_{!,?,\S}}{I(e) + |V|_{!,?,\S}} = \frac{I(f) + |V'|_{!,?,\S}}{I(e) + I(e)}$

$$|R_{G}(B, U)| = |\{t/(princ(B), U, !_{t}, +) \mapsto^{*} (e, W, !_{\epsilon}, _{-})\}|$$

$$\leq |\{(e, W)/e \in G\}|$$

$$\leq |\{(e, W)/e \in G, I(e) = I(B)\}|$$

$$\leq |G| * max_{I(e)=I(B)}|L_{G}(e)|$$

$$max_{I(B)=d}|R_{G}(B, U)| \leq |G| * max_{I(e)=d}|L_{G}(e)|$$

impossible to conclude

F 4 AB F 4 B F B

Box of low level inside box of high level

Idea of the solution

Induction on $|U|\sim$ depth by depth interaction \sim strategy by depth Strategy by levels \sim restricted potentials $|U^{/I}|$

Idea of the solution

Induction on $|U|\sim$ depth by depth interaction \sim strategy by depth Strategy by levels \sim restricted potentials $|U^{/I}|$

Copy restricted to level /

$$t \in R_G^{//}(B,U)$$
 iff $(principal(B),U,!_t,+)\mapsto_{//}^* C_F$

Idea of the solution

Induction on $|U|\sim$ depth by depth interaction \sim strategy by depth Strategy by levels \sim restricted potentials $|U^{/I}|$

Copy restricted to level /

$$t \in R_G^{/I}(B,U)$$
 iff $(principal(B),U,!_t,+)\mapsto_{/I}^* C_F$

Canonical potential restricted at level /

$$L_G^{/I}(B) = \begin{cases} \{\varepsilon\} & \text{if } B \text{ has level } 0 \\ \bigcup_{U \in L_G^{/I}(B')} R_G^{/I-1}(B, U) \circ U & \text{if } B \subset B' \end{cases}$$

Strong bound L⁴

Dependence control

If $t \in R_G^{/I}(B, U)$, then $(principal(B), U, !_{\epsilon}, +) \leadsto^* (e, W, !_{\epsilon}, _{-})$ The mapping $t \mapsto (e, W^{/I})$ is injective

Bound L^4

If
$$(e, U, V, _) \leadsto (f, U', V', _)$$
, Then $I(e) + |V|_{!,?,\S} = I(f) + |V'|_{!,?,\S}$.

$$\begin{split} |R_G^{/I}(B,U)| &\leq |\{(e,W)/W \in L_G^{/I}(e)\}| \\ &\leq |G| * max |L_G^{/I}(e)| \\ max |R_G^{/I}(B,U)| &\leq |G| * max |L_G^{/I}(e)| \\ max |R_G^{/I}(B,U)| &\leq |G| * (max |R_G^{/I-1}(B,U)|)^{\partial(G)} \end{split}$$

$$T_{G_0} \leq T_{G_1} \leq T_G \leq poly(W_G) \leq poly(|G|) \leq poly(|G_0|)$$

$DLALL_0$

Grammar of types of DLALL₀

$$A, B ::= n.X \mid A \multimap B \mid A \Rightarrow B \mid \forall X, A$$

$$x_i: A_i^{m_i}$$
; $y_j: B_j^{n_j} \vdash t: A^n$

$$x: A^{n+z} \vdash x: z.A^n$$
 ax

$$\frac{\Gamma_1; \Delta_1 \vdash t : A \Rightarrow B^n \quad ; z : C^{m+1} \vdash u : A^{n+1}}{\Gamma_1, z : C^m; \Delta_1 \vdash tu : B^n} \Rightarrow_e$$

$$\frac{\Gamma, x : A^n; \Delta \vdash t : B^n}{\Gamma; \Delta \vdash \lambda x.t : A \Rightarrow B^n} \Rightarrow_i$$

Stroung bound for *DLALL*₀

If t is typable in $DLALL_0$, we assign an L_0^4 intuitionnistic net to it.

Simulation theorem

Bound DLALLo

If t is typable in $DLALL_0$ with level $\leq l$, then t strongly normalizes in $\leq p_l(|t|)$ steps.

Light linear logic systems capturing P

	Logic systems	Type systems
$ \begin{array}{c c} & & & \\ & & & \\ ?C & & & \\ ?A^{\perp} \downarrow & & \downarrow \S A \end{array} $	LLL Weak bound ✓ Strong bound ✓	DLAL Weak bound ✓ Strong bound ✓
$ \begin{array}{ccc} & & & & \\ ?C & & & \\ ?A^{\perp} \downarrow & & \downarrow \S A \end{array} $	L ⁴ Weak bound ✓ Strong bound ✓	
?C	L_0^4 Weak bound \checkmark Strong bound \checkmark	DLALL ₀ Weak bound ✓ Strong bound ✓

Future works

• Prove a strong bound for L^{3a} .

Future works

- Prove a strong bound for L^{3a} .
- Find a characterization of stratification and dependence control

Future works

- Prove a strong bound for L^{3a} .
- Find a characterization of stratification and dependence control
- Generalize context semantics to add probabilities or other constructions