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Geometry of Interaction

I A dynamic, interactive approach to interpreting the rules of
(linear) logic.

I Many possible ways of presenting GoI.
I Operator algebras [Girard1987,Girard2011];
I Categorical constructions [JSV1997, AHS2002];
I An algebra of weights [DR1992, DR1993];
I Token Machines [DR1996];
I Context semantics [GAL1992];
I . . .

I Here, we are specially interested in GoI in its concrete,
algorithmic incarnations, namely token machines and
context semantics.

I Tool to prove properties of programs and proofs.
I Model of computation.
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Token Machines
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How To Capture Persistency?

I Every proof π corresponds to an automaton Aπ.
I States of Aπ are elements of Sπ = Eπ × C, where

I Eπ are the edges of π;
I C are contexts (i.e., formulas with an hole) in the underlying

logic MLL.
I The transition function →π is a binary relation on Sπ

which is bideterministic.
I Whenever (e, C)→π (f,D), (e, f) forms a short direct path.

I How is →π is defined?
I We should preserve the following invariant along a

computation: either F (e) = C[α] or F (e) = C[α⊥]. Let
Atom(e, C) = α.

I Moreover, (e, C)→π (f,D) then Atom(e, C) = Atom(f,D).
I This works for proofs in propositional MLL.
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Persistent Paths as a Model

I Given π, the relation →π is deterministic and invertible.
I Are there any (e, C) such that (e, C) 6→π?

I If (e, C) does not satisfy the invariant...
I Or if e is a a conclusion of π and F (e) = C(α) for some

atom α.
I Suppose π has just one conclusion e.
I Let C−π be the set of pairs (e, C) such that:

I e is the conclusion of π;
I F (e) = C(α⊥) for some α.

Similarly for C+
π .

I Interpretation:
JπK : C−π ⇀ C+

π

Proposition (Soundness)
For every π, JπK is total. Moreover, JπK = JρK whenever π  ρ.



Persistent Paths as a Model

I How much about π can be read from JπK?
I If π is cut-free and axioms are atomic, then π itself can be

retrieved from JπK.
I Example.

I Suppose the conclusion of π is ` (α⊥ ` α⊥)` (α⊗ α).
I Then π looks as follows:

`
` ⊗

α⊥ αα⊥ α

(α⊥ ` α⊥) ` (α ⊗ α)

ρ

I ρ is only made of axioms, and can be built by querying JπK
on (e, ([·]` α⊥)` (α⊗ α)) and (e, (α⊥ ` [·])` (α⊗ α))
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Persistent Paths as a Model

`
` ⊗

α⊥ αα⊥ α

(α⊥ ` α⊥) ` (α ⊗ α)

ρ2 3111 4

ρtrue =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
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Another Digression: the Structure of Automata
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Another Digression: the Structure of Automata

` Γ, A ` ∆, A⊥

` Γ,∆
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. . .



Generalizations

I Geometry of Interaction works reasonably well for systems
beyond propositional MLL.

I Exponentials.
I States cannot be just pairs (e, C).
I If [·] appears in the scope of any ! and ? operators in C,

then we need to keep track of which particular “copy” of [·]
we are talking about.

I Similarly if e is inside an exponential box.
I States become tuples in the form (e, C, µ, ν), where µ and ν

are sequences of natural numbers.
I Soundness holds, provided the logical connective ? does not

appear in the conclusion of the underlying proof.
I Second Order Quantification and Recursive Types.

I The fundamental invariant does not hold anymore, so C is
itself replaced by a string in {p, q}∗ playing the same role,
but having unbounded length.



Generalizations

!

π

c ⊗
?A⊥ !A⊥⊗!A⊥

⇓

!

π

⊗
!A⊗!A

!

π

!A !A



An Algebraic Point of View

I Instead of isolating persistent paths through automata,
proceed by assigning to any straight path a weight, and
evaluate such a weight using the so-called path algebra.

I Monomials: p, q, 1, 0.
I Concatenation of paths: binary operation ·, with 1 as an

identity and 0 as an absorbing element.
I Reversing a path: unary operation (·)∗.
I Equations:

0∗ = 0 1∗ = 1

(x∗)∗ = x (xy)∗ = y∗x∗

q∗q = p∗p = 1 q∗p = p∗q = 0



An Algebraic Point of View

(λx.x)(λx.x)

`` p

p⊗

q pq

q

q∗pq∗ = 0 · q∗ = 0
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An Algebraic Point of View

(λx.x)(λx.x)

`` p

p⊗

q pq

q

q∗qp∗pq = 1 · p∗pq = 1 · q = q



Applications

I GoI as a Proof Technique. Some crucial aspects of the
dynamics of cut-elimination are put in evidence by GoI.

I Examples:
I Correctness of optimal reduction algorithms [GAL1992].
I Termination of pure nets [DR1993].

I GoI as an Implementation Technique. GoI is effective.
As such, it can be considered itself as a way to compute.

I Examples:
I Readback algorithms for optimal reduction [GAL1992].
I (Directed) virtual reduction [DR1992, DPR1993].
I An interactive machine implementing the λ-calculus

[Mackie1994].
I A parallel machine for the λ-calculus [Pinto1999].



Part II

Applications to ICC



Context: Implicit Complexity

I Goal
I Machine-free characterizations of complexity classes.
I P, PSPACE, L, NC,. . .

I Why?
I Simple and elegant presentations of complexity classes.
I Formal methods for complexity analysis of programs.

I How?
I Recursion theory [BC92], [Leivant94], . . .
I Model theory [Fagin73], . . . ,
I
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Context: Implicit Complexity

I Goal
I Machine-free characterizations of complexity classes.
I P, PSPACE, L, NC,. . .

I Why?
I Simple and elegant presentations of complexity classes.
I Formal methods for complexity analysis of programs.

I How?
I Recursion theory [BC92], [Leivant94], . . .
I Model theory [Fagin73], . . . ,
I Proof theory and λ-calculi ... by way of “linear techniques”.
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Hot to Prove I ⊆ P?

I This corresponds to Soundness wrt a complexity class.
I Natural solution: analyze the combinatorics of I.

I Studying cut-elimination, normalization, evaluation, etc.
I Apparently, this is the simplest solution.

I What if I1, . . . , In ⊆ P?
I The proofs would be similar;
I But more or less everything must be redone;
I Even worse when I1 ⊆ P1, . . . , In ⊆ Pn



Factorizing Through W(·)

π ∈ S 7−→W(π) ∈ N

∀π ∈ S W(π) ∼ Complexity(π)

I W(·) should be easier to compute (and reason about) than
Complexity(·) itself!

I W(π) needs to reveal something about the dynamics of π;
I W(π) can be “read” from JπK.
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A Case Study: S ≡ MELL

I Let W(π) be the number of times boxes are copied along
the normalization of π...

I ... in any strategy.

Proposition
W(π) and Time(π) are related by polynomials.

I W(π) can be computed from the GoI interpretation JπK of
π:
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Same Idea in Other Contexts

I Linear Higher-Order Recursion.
I Gödel’s T when contraction is restricted to base types.
I Possibly endowed with ramification

conditions [Leivant1994,Hofmann1997]
I W(M) is the maximum size of first-order terms appearing

along a reduction sequence for M .
I Results:

T A W ∅
H(·) PA PR PR PR
RH(·) E E P P

I Optimal Reduction.
I Interaction nets as a way to implement λ-calculus optimal

reduction.
I W(G) is the total number of times fan-in and fan-out nodes

are duplicated along the reduction of the graph G.
I Results: a study of optimal reduction actual performance

when done on terms coming from ELL or LLL.



Another Application: Sublinear Space Computation

I Computation with data too large to fit into memory.
I Input is accessed interactively, piece by piece, with random

access.
I Output can only be produced interactively.

I Complexity classes which fit in this scenario: L, NL, etc.
I How to write programs working in sublinear space?

I Cannot store intermediate values when composing
programs...

I The same computation is possibly performed repeatedly.
I Is there any natural characterization of the sublinear space

classes in terms of higher-order programming languages?
I We would like a programming language enjoying “closure

properties” similar to the one of the underlying complexity
class.
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M ⇔ N is the interactive composition of M and N



What About Functional Programming?

I Ordinary evaluation mechanisms are inherently
non-interactive.

I Composition in the λ-calculus:

M,N ⇒ λx.M(Nx)

I Space measure: size of intermediate values.
I CbV is not space-efficient:

(λx.M(Nx))V →M(NV )→∗ MW →∗ Z

Intermediate value W appears explicitly during the
computation

I Goal: “offline” λ-calculus...
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Main Ideas

I Keep the λ-calculus as the underlying programming
language.

I Compiling every λ-term M to an equivalent, interactive,
automaton which computes the GoI interpretation of M .

I Not really a new idea [Mackie1994], [Pinto2001].
I Space consumption of a program can be read off from its

type derivation.



Compiling Into an Interactive Form

I Interactive meaning of a type A:

A =⇒ (A−, A+)

I A−: questions for A;
I A+: answers for A.

I Interactive meaning of a program M :

M : A→ B

⇓

[M ] : A+ +B− → A− +B+



Compiling Into an Interactive Form

I Interactive meaning of a type A:

A =⇒ (A−, A+)

I A−: questions for A;
I A+: answers for A.

I Interactive meaning of a program M :

M : A→ B

⇓

[M ] : A+ +B− → A− +B+



Compiling Into an Interactive Form

I Interactive meaning of a type A:

A =⇒ (A−, A+)

I A−: questions for A;
I A+: answers for A.

I Interactive meaning of a program M :

M : A→ B

⇓

[M ] : A+ +B− → A− +B+



Compiling Into an Interactive Form

I Primitives (combinators): easy.
I Composition (M : A→ B and N : B → C):

A+

B−
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B+

[M ]

B+

C−

B−

C+

[N ]

I [M ] is an automaton computing the interpretation of M .
I [M ] can be seen as a message passing network.
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A Simple, First-Order, Functional Language O

I Finite Types:

A ::= α | 1 | A+A | A×A

I Ordering on all types:

minA | succA(M) | eqA(M,N)

I Loops:
loop(c.M)(N)

I CbV evaluation.
I Harmless: this is the language in which we write automata.

I The object language.
I The space consumption of t : A→ B is proportional to the

“size” of its type.



Towards IntML

I Syntactically:
I Enrich the language with higher-order types:

X ::= [A] | X ⊗X | A ·X ( X

I A linear lambda calculus with pairs.
I Terms from O appears inlined, e.g. [M ].
I All computation is done by O.

I Semantically:
I Take any model (e.g. the term model) O of O.
I Apply the Int-construction [JSV96] to it, obtaining Int(O).
I Int(O) is a model of IntML “for free”.



Towards IntML

I Syntactically:
I Enrich the language with higher-order types:

X ::= [A] | X ⊗X | A ·X ( X

I A linear lambda calculus with pairs.
I Terms from O appears inlined, e.g. [M ].
I All computation is done by O.

I Semantically:
I Take any model (e.g. the term model) O of O.
I Apply the Int-construction [JSV96] to it, obtaining Int(O).
I Int(O) is a model of IntML “for free”.



Why Sublinear Space?
Theorem
Any O term M : A→ B can be evaluated on any input c : A in
space proportional to |c|.

I Why sublinear, then?
I Interaction allows for an exponential improvement:

Strings Sα = [α]( [3]
Graphs Gα = ([α]( [2])⊗ ([α× α]( [2])

Theorem
Any IntML term t : Sα( SP (α) computes a logspace function.

I Also the converse holds:

Theorem
For every logspace function, there is an IntML term
M : Sα( SP (α) which computes it.
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A Third Application: ICC and Intensional Expressivity

I ICC systems can be seen as a programming languages
guaranteeing quantitative properties of programs:

S
I

P

I Extensional completeness does not imply much in terms of
intensional expressivity.

I Can natural algorithms be written in I?
I Is it possible to design an ICC system such that I is as

close as possible to P?
I For all “reasonable” complexity classes, P is not even

recursively enumerable. . .



ICC and Intensional Expressivity

∀π ∈ S W(π) ∼ Complexity(π)
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ICC and Intensional Expressivity

∀M ∈ PCF W(M) ∼ Complexity(M)

I Idea: internalize the information provided by W(·) into a
type system TW.

I W(·) can be read from types. In other words:

`M : A⇔W(A) = W(M).

I There has to be a price to pay, however.
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Some Examples

I Simply Types
I “Well-typed programs do not go wrong”.
I Type inference and type checking are often decidable.

I Dependent Types
I Type checking is decidable.
I Interesting, extensional properties can be specified.

I Intersection Types
I Sound and complete for termination.
I Type inference is not decidable.
I Studying programs as functions requires considering an
infinite family of type derivations.



A Notable Exception: Bounded Linear Logic

I One of the earliest examples of a system capturing
polynomial time functions [GSS1992].

I Extensionally!
I For every polytime function there is at least one proof in

BLL computing it.
I Types:

A ::= α(p1, . . . , pn) | A⊗A | A( A | ∀α.A | !x<pA

I How many “polytime proofs” does BLL capture?
I There’s evidence they are many [DLHofmann2010].

I Type checking can be problematic. As an example:

Γ, !x<pA, !y<qA{p+ y/x} ` B p+ q ≤ r
Γ, !x<rA ` B X



A Change in Perspective
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d`PCF: a Bird’s Eye View

I A type system for the lambda calculus with constants and
full higher-order recursion. (i.e. PCF).

I Greatly inspired by BLL.
I Indices are not necessarily polynomials, but terms from a

signature Σ.
I Symbols in Σ are given a meaning by an equational

program E .
I Side conditions in the form:

φ; Φ |=E I ≤ J

I Types and modal types are defined as follows:

A,B ::= Nat[I, J] | F ( A basic types
F,G ::= [a < I] ·A modal types



d`PCF: a Bird’s Eye View

I A type system for the lambda calculus with constants and
full higher-order recursion. (i.e. PCF).

I Greatly inspired by BLL.
I Indices are not necessarily polynomials, but terms from a

signature Σ.
I Symbols in Σ are given a meaning by an equational

program E .
I Side conditions in the form:

φ; K1 ≤ H1, . . . ,Kn ≤ Hn |=E I ≤ J

I Types and modal types are defined as follows:

A,B ::= Nat[I, J] | F ( A basic types
F,G ::= [a < I] ·A modal types



The Meaning of Types

[a < I] · A( B

⇓
(A{0/a} ⊗ . . .⊗ A{I− 1/a})( B



The Meaning of Types

[a < I] · A( B

⇓
(A{0/a} ⊗ . . .⊗ A{I− 1/a})( B



d`PCF: Intended Meaning

a; ∅; ∅ `I M : [b < J] · Nat[a]( Nat[K]

What does this mean?

I M computes a function from natural numbers to natural
numbers.

I Something extensional:
I On input a natural number n, M returns a natural number

K{n/a}.
I Something more intensional:

I The cost of evaluation of M on an input n is (I + J){n/a}.
I Two questions:

I Is this correct?
I How many programs can be captured this way?
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Soundness and Completeness
Theorem
Let ∅; ∅; ∅ `I M : Nat[J,K] and M ⇓n m. Then n ≤ |M | · JIKEρ

Theorem (Relative Completeness for Programs)
Let M be a PCF program such that M ⇓n m. Then, there exist
two index terms I and J such that JIKU ≤ n and JJKU = m and
such that the term M is typable in d`PCF as
∅; ∅; ∅ `UI M : Nat[J].

Theorem (Relative Completeness for Functions)

Suppose that M is a PCF term such that `M : Nat→ Nat.
Moreover, suppose that there are two (total and computable)
functions f, g : N→ N such that M n ⇓g(n) f(n). Then there are
terms I, J,K with JI + JK ≤ g and JKK = f , such that

a; ∅; ∅ `UI M : [b < J] · Nat[a]( Nat[K].
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d`PCF
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Thank you!

Questions?
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