Geometry of Interaction with Applications to ICC

Ugo Dal Lago

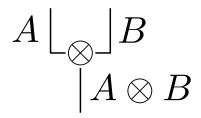
Logic and Interactions, February 7th 2012

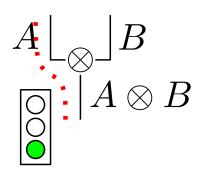
Geometry of Interaction

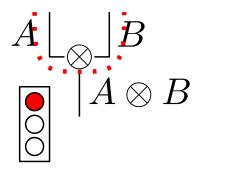
- ► A dynamic, interactive approach to interpreting the rules of (linear) logic.
- ▶ Many possible ways of presenting GoI.
 - Operator algebras [Girard1987,Girard2011];
 - ► Categorical constructions [JSV1997, AHS2002];
 - ▶ An algebra of weights [DR1992, DR1993];
 - ▶ Token Machines [DR1996];
 - ► Context semantics [GAL1992];
 - ▶ ...
- ► Here, we are specially interested in GoI in its concrete, algorithmic incarnations, namely token machines and context semantics.
 - ▶ Tool to prove properties of programs and proofs.
 - Model of computation.

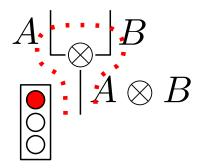
Part I

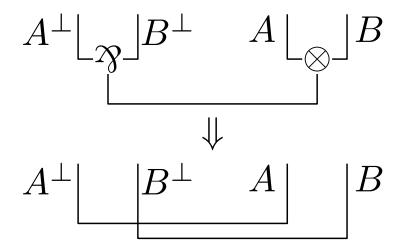
Token Machines

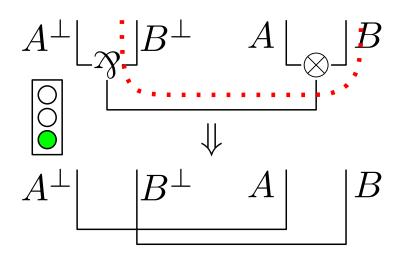




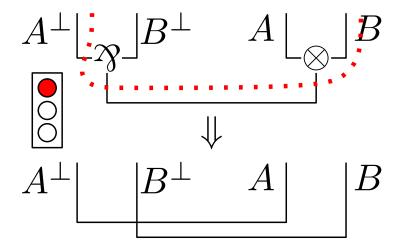


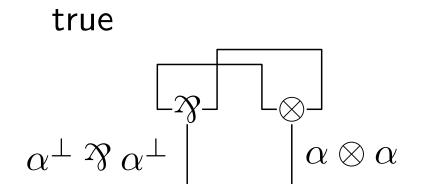


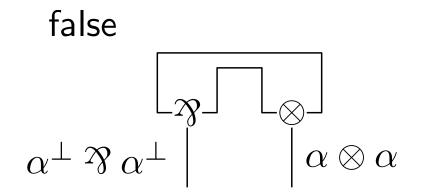


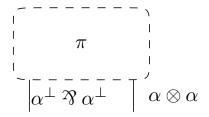


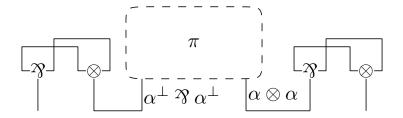
Persistent Paths

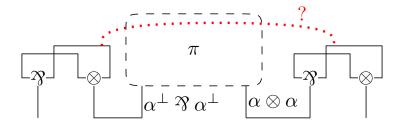






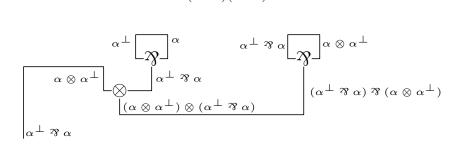


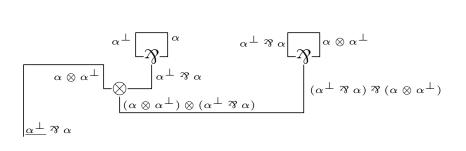


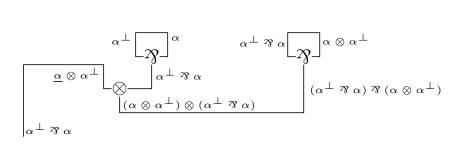


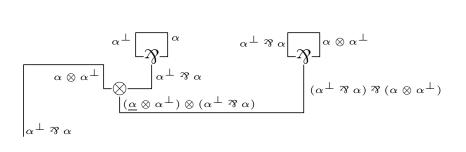
How To Capture Persistency?

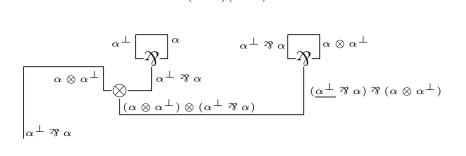
- Every proof π corresponds to an automaton \mathcal{A}_{π} .
- States of \mathcal{A}_{π} are elements of $\mathcal{S}_{\pi} = E_{\pi} \times \mathcal{C}$, where
 - E_{π} are the edges of π ;
 - ➤ C are contexts (i.e., formulas with an hole) in the underlying logic MLL.
- ► The transition function \rightarrow_{π} is a binary relation on S_{π} which is bideterministic.
 - ▶ Whenever $(e, C) \rightarrow_{\pi} (f, D)$, (e, f) forms a short direct path.
- How is \rightarrow_{π} is defined?
 - We should preserve the following invariant along a computation: either F(e) = C[α] or F(e) = C[α[⊥]]. Let Atom(e, C) = α.
 - Moreover, $(e, C) \rightarrow_{\pi} (f, D)$ then Atom(e, C) = Atom(f, D).
- ▶ This works for proofs in propositional **MLL**.

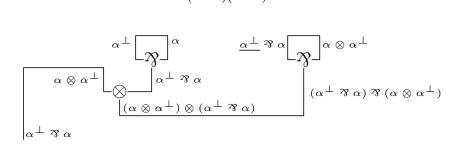


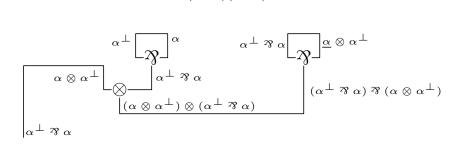


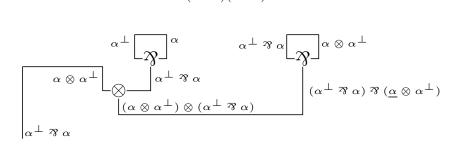


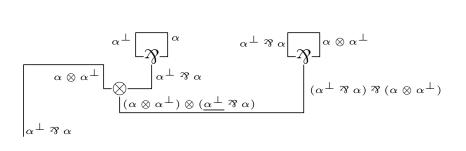


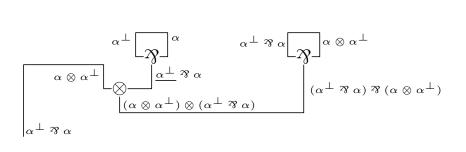


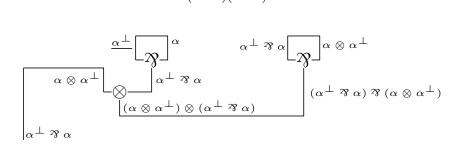


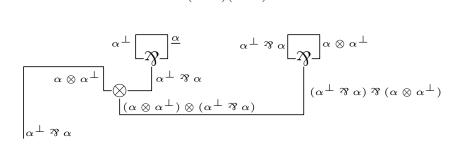


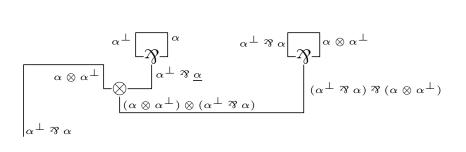


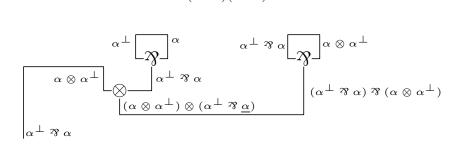


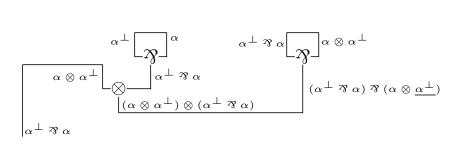


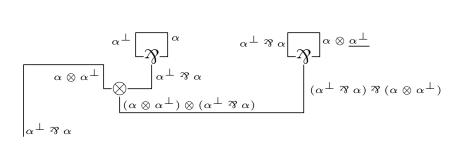


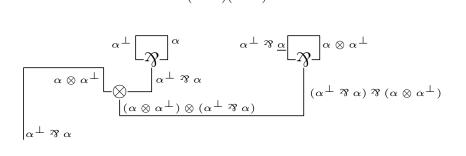


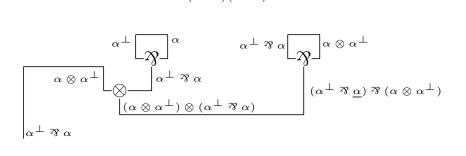


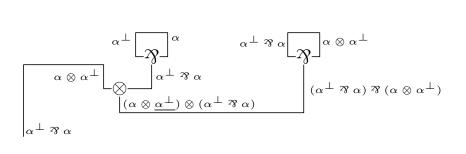


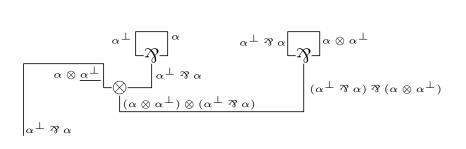






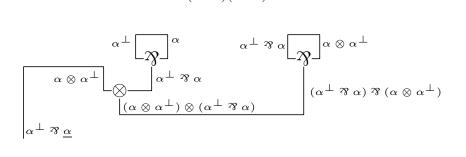






How to Capture Persistency? - Example

$(\lambda x.x)(\lambda x.x)$



- Given π , the relation \rightarrow_{π} is deterministic and invertible.
- Are there any (e, C) such that $(e, C) \not\rightarrow_{\pi}$?
 - ▶ If (e, C) does not satisfy the invariant...
 - Or if e is a a conclusion of π and $F(e) = C(\alpha)$ for some atom α .
- Suppose π has just *one* conclusion *e*.
- Let \mathcal{C}_{π}^{-} be the set of pairs (e, C) such that:
 - e is the conclusion of π ;
 - $F(e) = C(\alpha^{\perp})$ for some α .

Similarly for \mathcal{C}^+_{π} .

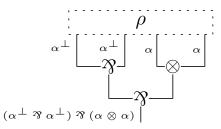
Interpretation:

$$\llbracket \pi \rrbracket : \mathcal{C}_{\pi}^{-} \rightharpoonup \mathcal{C}_{\pi}^{+}$$

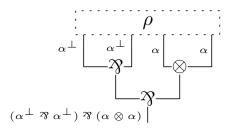
Proposition (Soundness)

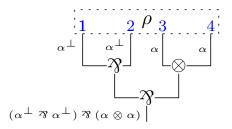
For every π , $\llbracket \pi \rrbracket$ is total. Moreover, $\llbracket \pi \rrbracket = \llbracket \rho \rrbracket$ whenever $\pi \rightsquigarrow \rho$.

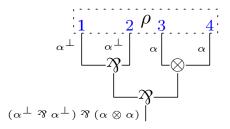
- How much about π can be read from $[\![\pi]\!]$?
- If π is cut-free and axioms are atomic, then π itself can be retrieved from $[\![\pi]\!]$.
- Example.
 - Suppose the conclusion of π is $\vdash (\alpha^{\perp} \Im \alpha^{\perp}) \Im (\alpha \otimes \alpha)$.
 - Then π looks as follows:



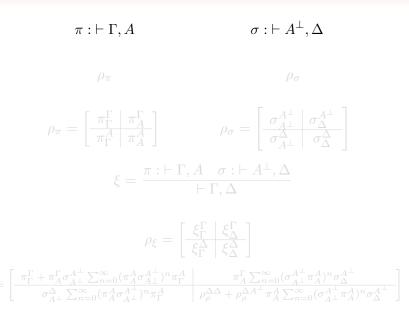
▶ ρ is only made of axioms, and can be built by querying $\llbracket \pi \rrbracket$ on $(e, ([\cdot] \Im \alpha^{\perp}) \Im (\alpha \otimes \alpha))$ and $(e, (\alpha^{\perp} \Im [\cdot]) \Im (\alpha \otimes \alpha))$

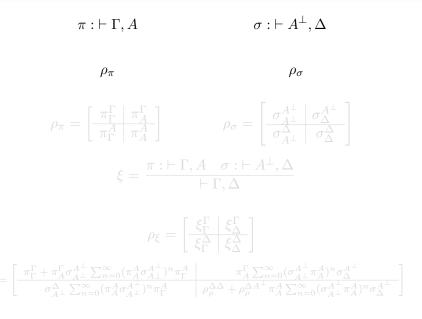


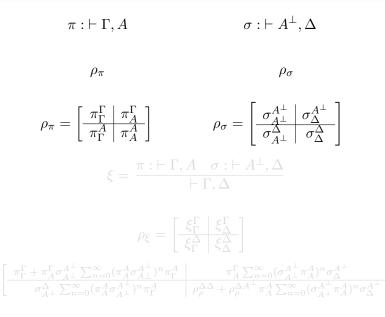


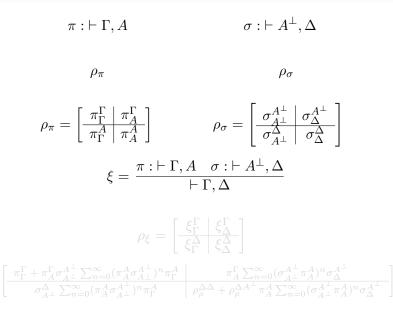


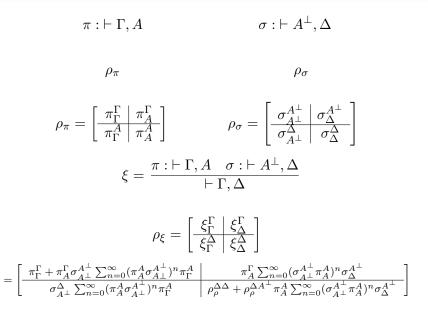
$$\rho_{\rm true} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$



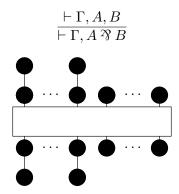


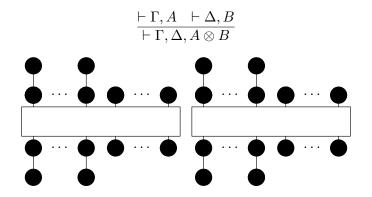


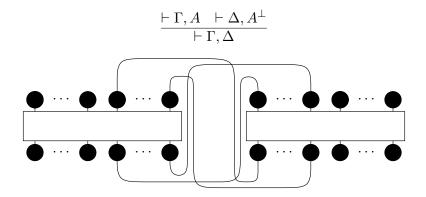




$\vdash A^{\perp}, A$







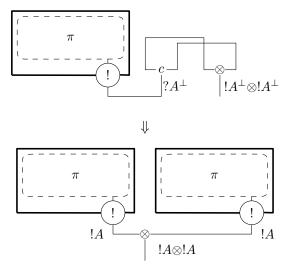
Generalizations

- Geometry of Interaction works reasonably well for systems beyond propositional **MLL**.
- Exponentials.
 - States cannot be just pairs (e, C).
 - ► If [·] appears in the scope of any ! and ? operators in C, then we need to keep track of which particular "copy" of [·] we are talking about.
 - Similarly if e is inside an exponential box.
 - ► States become tuples in the form (e, C, μ, ν) , where μ and ν are sequences of natural numbers.
 - Soundness holds, provided the logical connective ? does not appear in the conclusion of the underlying proof.

▶ Second Order Quantification and Recursive Types.

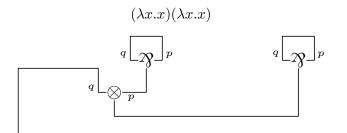
► The fundamental invariant does not hold anymore, so C is itself replaced by a string in {p, q}* playing the same role, but having unbounded length.

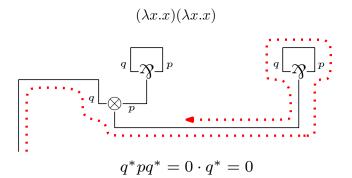
Generalizations



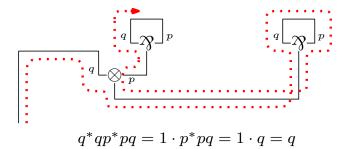
- ▶ Instead of isolating persistent paths through automata, proceed by assigning to any straight path a weight, and evaluate such a weight using the so-called **path algebra**.
- Monomials: p, q, 1, 0.
- ▶ Concatenation of paths: binary operation ·, with 1 as an identity and 0 as an absorbing element.
- Reversing a path: unary operation $(\cdot)^*$.
- Equations:

 $\begin{array}{ll} 0^{*} = 0 & 1^{*} = 1 \\ (x^{*})^{*} = x & (xy)^{*} = y^{*}x^{*} \\ q^{*}q = p^{*}p = 1 & q^{*}p = p^{*}q = 0 \end{array}$





$(\lambda x.x)(\lambda x.x)$



Applications

- ► GoI as a Proof Technique. Some crucial aspects of the dynamics of cut-elimination are put in evidence by GoI.
- ► Examples:
 - ▶ Correctness of optimal reduction algorithms [GAL1992].
 - ▶ Termination of pure nets [DR1993].
- ▶ GoI as an Implementation Technique. GoI is *effective*. As such, it can be considered itself as a way to compute.
- ► Examples:
 - ▶ Readback algorithms for optimal reduction [GAL1992].
 - ▶ (Directed) virtual reduction [DR1992, DPR1993].
 - An interactive machine implementing the λ-calculus [Mackie1994].
 - A parallel machine for the λ -calculus [Pinto1999].

Part II Applications to ICC

► Goal

- ▶ Machine-free characterizations of complexity classes.
- ▶ P, PSPACE, L, NC,...
- ► Why?
 - ▶ Simple and elegant presentations of complexity classes.
 - ▶ Formal methods for complexity analysis of programs.

► How?

- ▶ Recursion theory [BC92], [Leivant94], ...
- Model theory [Fagin73], \ldots ,

►

Goal

- ▶ Machine-free characterizations of complexity classes.
- ▶ P, PSPACE, L, NC,...
- ► Why?
 - ▶ Simple and elegant presentations of complexity classes.
 - ▶ Formal methods for complexity analysis of programs.

► How?

- ▶ Recursion theory [BC92], [Leivant94], ...
- Model theory [Fagin73], \ldots ,

►

Goal

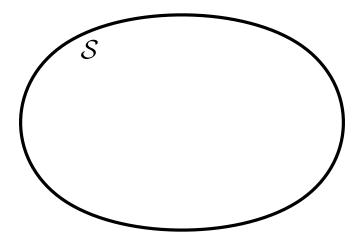
- ▶ Machine-free characterizations of complexity classes.
- ▶ P, PSPACE, L, NC,...
- ► Why?
 - ▶ Simple and elegant presentations of complexity classes.
 - ▶ Formal methods for complexity analysis of programs.
- ► How?
 - ▶ Recursion theory [BC92], [Leivant94], ...
 - Model theory [Fagin73], \ldots ,
 - Proof theory and λ -calculi

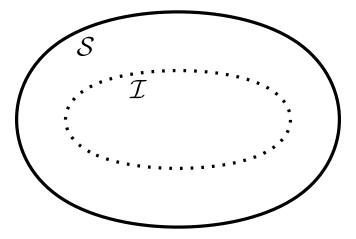
Goal

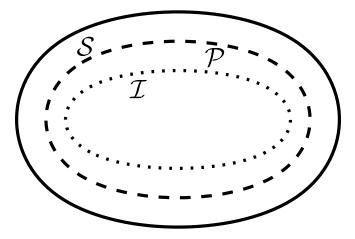
- ▶ Machine-free characterizations of complexity classes.
- ▶ P, PSPACE, L, NC,...
- ► Why?
 - ▶ Simple and elegant presentations of complexity classes.
 - ▶ Formal methods for complexity analysis of programs.
- ► How?
 - ▶ Recursion theory [BC92], [Leivant94], ...
 - Model theory [Fagin73], \ldots ,
 - ▶ Proof theory and λ -calculi

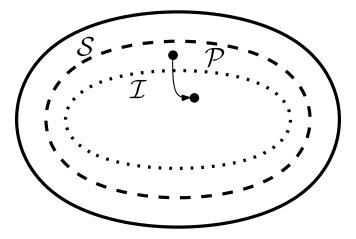
Goal

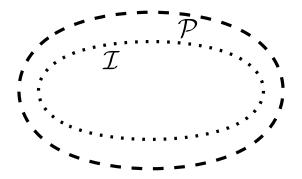
- ▶ Machine-free characterizations of complexity classes.
- ▶ P, PSPACE, L, NC,...
- ► Why?
 - ▶ Simple and elegant presentations of complexity classes.
 - ▶ Formal methods for complexity analysis of programs.
- ► How?
 - ▶ Recursion theory [BC92], [Leivant94], ...
 - Model theory [Fagin73], \ldots ,
 - ▶ Proof theory and λ -calculi ... by way of "linear techniques".











- ▶ This corresponds to **Soundness** wrt a complexity class.
- Natural solution: analyze the combinatorics of \mathcal{I} .
 - ▶ Studying cut-elimination, normalization, evaluation, etc.
 - Apparently, this is the simplest solution.
- What if $\mathcal{I}_1, \ldots, \mathcal{I}_n \subseteq \mathcal{P}$?
 - The proofs would be similar;
 - But more or less everything must be redone;
 - Even worse when $\mathcal{I}_1 \subseteq \mathcal{P}_1, \ldots, \mathcal{I}_n \subseteq \mathcal{P}_n$

Factorizing Through $\mathbf{W}(\cdot)$

$\pi \in \mathcal{S} \longmapsto \mathbf{W}(\pi) \in \mathbb{N}$

$\forall \pi \in \mathcal{S} \qquad \mathbf{W}(\pi) \sim Complexity(\pi)$

- $\mathbf{W}(\cdot)$ should be easier to compute (and reason about) than *Complexity*(\cdot) itself!
- $\mathbf{W}(\pi)$ needs to reveal something about the dynamics of π ;
- $\mathbf{W}(\pi)$ can be "read" from $[\![\pi]\!]$.

Factorizing Through $\mathbf{W}(\cdot)$

$\pi \in \mathcal{S} \longmapsto \mathbf{W}(\pi) \in \mathbb{N}$

$\forall \pi \in \mathcal{S} \qquad \mathbf{W}(\pi) \sim Complexity(\pi)$

- $\mathbf{W}(\cdot)$ should be easier to compute (and reason about) than *Complexity*(\cdot) itself!
- $\mathbf{W}(\pi)$ needs to reveal something about the dynamics of π ;
- $\mathbf{W}(\pi)$ can be "read" from $[\![\pi]\!]$.

Factorizing Through $\mathbf{W}(\cdot)$

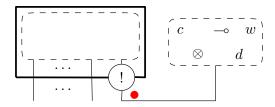
$\pi \in \mathcal{S} \longmapsto \mathbf{W}(\pi) \in \mathbb{N}$

$\forall \pi \in \mathcal{S} \qquad \mathbf{W}(\pi) \sim Complexity(\pi)$

- ► W(·) should be easier to compute (and reason about) than Complexity(·) itself!
- $\mathbf{W}(\pi)$ needs to reveal something about the dynamics of π ;
- $\mathbf{W}(\pi)$ can be "read" from $[\![\pi]\!]$.

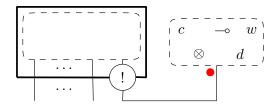
- Let $\mathbf{W}(\pi)$ be the number of times boxes are copied along the normalization of π ...
 - ... in any strategy.

Proposition $\mathbf{W}(\pi)$ and $Time(\pi)$ are related by polynomials.



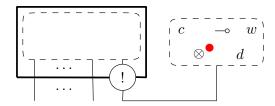
- Let $\mathbf{W}(\pi)$ be the number of times boxes are copied along the normalization of π ...
 - ... in any strategy.

Proposition $\mathbf{W}(\pi)$ and $Time(\pi)$ are related by polynomials.



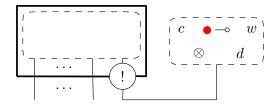
- Let $\mathbf{W}(\pi)$ be the number of times boxes are copied along the normalization of π ...
 - ... in any strategy.

Proposition $\mathbf{W}(\pi)$ and $Time(\pi)$ are related by polynomials.



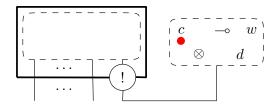
- Let $\mathbf{W}(\pi)$ be the number of times boxes are copied along the normalization of π ...
 - ... in any strategy.

Proposition $\mathbf{W}(\pi)$ and $Time(\pi)$ are related by polynomials.



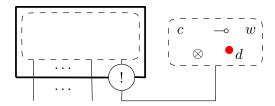
- Let $\mathbf{W}(\pi)$ be the number of times boxes are copied along the normalization of π ...
 - ... in any strategy.

Proposition $\mathbf{W}(\pi)$ and $Time(\pi)$ are related by polynomials.



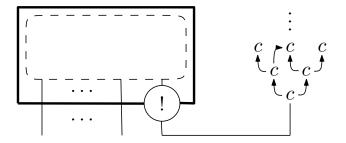
- Let $\mathbf{W}(\pi)$ be the number of times boxes are copied along the normalization of π ...
 - ... in any strategy.

Proposition $\mathbf{W}(\pi)$ and $Time(\pi)$ are related by polynomials.



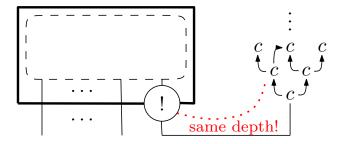
A Case Study: $S \equiv MELL$

 $\mathcal{I} \equiv \mathsf{ELL}$



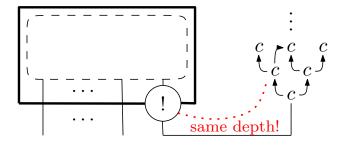
A Case Study: $S \equiv MELL$

 $\mathcal{I} \equiv \mathsf{ELL}$



A Case Study: $S \equiv MELL$

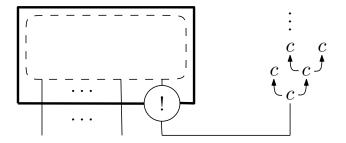
 $\mathcal{I} \equiv \mathsf{ELL}$



 $\mathsf{ELL}\subseteq\mathsf{ELTIME}$

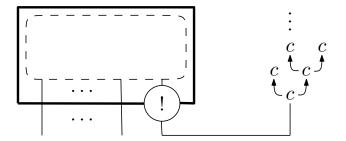
A Case Study: $S \equiv MELL$

 $\mathcal{I} \equiv \mathsf{LLL}$



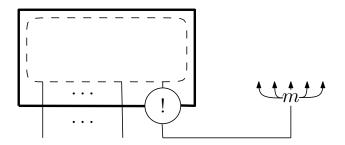
A Case Study: $S \equiv MELL$

 $\mathcal{I} \equiv \mathsf{LLL}$

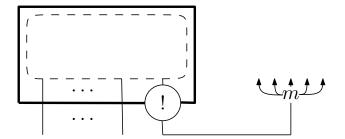


 $\mathsf{LLL}\subseteq\mathsf{FPTIME}$

 $\mathcal{I} \equiv \mathsf{SLL}$

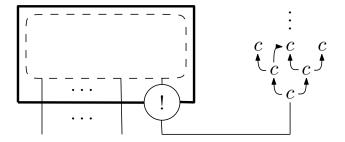


 $\mathcal{I} \equiv \mathsf{SLL}$

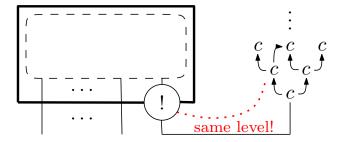


 $\mathsf{SLL} \subseteq \mathsf{FPTIME}$

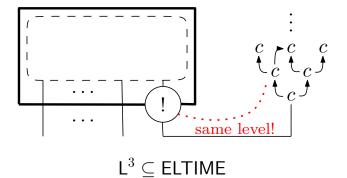
$$\mathcal{I} \equiv \mathsf{L}^3$$



$$\mathcal{I} \equiv \mathsf{L}^3$$



$$\mathcal{I} \equiv \mathsf{L}^3$$



Same Idea in Other Contexts

▶ Linear Higher-Order Recursion.

- \blacktriangleright Gödel's ${\cal T}$ when contraction is restricted to base types.
- Possibly endowed with ramification conditions [Leivant1994,Hofmann1997]
- $\mathbf{W}(M)$ is the maximum size of *first-order terms* appearing along a reduction sequence for M.
- ► Results:

	Т	А	W	Ø
$H(\cdot)$	PA	PR	PR	PR
$RH(\cdot)$	E	E	Р	Р

- Optimal Reduction.
 - \blacktriangleright Interaction nets as a way to implement $\lambda\text{-calculus}$ optimal reduction.
 - $\mathbf{W}(G)$ is the total number of times *fan-in* and *fan-out* nodes are duplicated along the reduction of the graph G.
 - Results: a study of optimal reduction *actual* performance when done on terms coming from ELL or LLL.

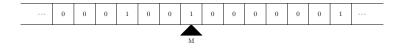
Another Application: Sublinear Space Computation

- Computation with data **too large** to fit into memory.
 - ▶ Input is accessed interactively, piece by piece, with random access.
 - Output can only be produced interactively.
- ▶ Complexity classes which fit in this scenario: L, NL, etc.
- ▶ How to write programs working in sublinear space?
 - Cannot store intermediate values when composing programs...
 - ▶ The same computation is possibly performed repeatedly.
- ▶ Is there any **natural** characterization of the sublinear space classes in terms of higher-order programming languages?
 - ▶ We would like a programming language enjoying "closure properties" similar to the one of the underlying complexity class.

Another Application: Sublinear Space Computation

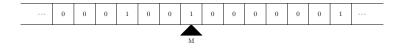
- Computation with data **too large** to fit into memory.
 - ▶ Input is accessed interactively, piece by piece, with random access.
 - Output can only be produced interactively.
- ▶ Complexity classes which fit in this scenario: L, NL, etc.
- ▶ How to write programs working in sublinear space?
 - Cannot store intermediate values when composing programs...
 - ▶ The same computation is possibly performed repeatedly.
- ► Is there any **natural** characterization of the sublinear space classes in terms of higher-order programming languages?
 - ▶ We would like a programming language enjoying "closure properties" similar to the one of the underlying complexity class.

From Ordinary Turing Machines...



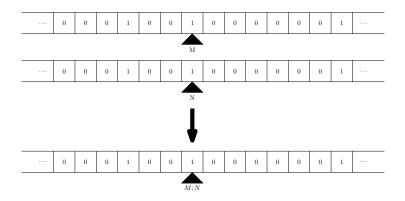
- ▶ Time measure: number of transitions.
- ▶ Space measure: maximum number of non-blank cells.

From Ordinary Turing Machines...



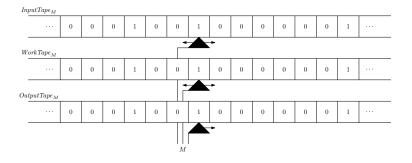
- ▶ Time measure: number of transitions.
- ▶ Space measure: maximum number of non-blank cells.

From Ordinary Turing Machines...



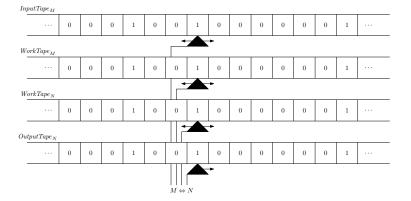
M; N is the batch composition of M and N

... to Offline Turing Machines

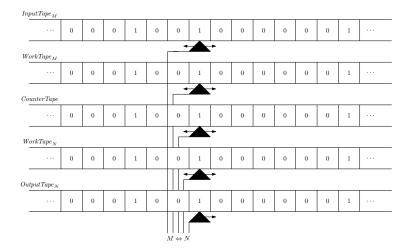


- ▶ Time measure: number of transitions.
- ▶ Space measure: only the work tape counts.

... to Offline Turing Machines



... to Offline Turing Machines



 $M \Leftrightarrow N$ is the interactive composition of M and N

- Ordinary evaluation mechanisms are inherently non-interactive.
- Composition in the λ -calculus:

$$M, N \Rightarrow \lambda x.M(Nx)$$

- ▶ Space measure: size of intermediate values.
- CbV is not space-efficient:

$$(\lambda x.M(Nx))V \to M(NV) \to^* MW \to^* Z$$

Intermediate value W appears explicitly during the computation

- Ordinary evaluation mechanisms are inherently non-interactive.
- Composition in the λ -calculus:

$$M, N \Rightarrow \lambda x.M(Nx)$$

- ▶ Space measure: size of intermediate values.
- CbV is not space-efficient:

 $(\lambda x.M(Nx))V \to M(NV) \to^* MW \to^* Z$

Intermediate value W appears explicitly during the computation

- Ordinary evaluation mechanisms are inherently non-interactive.
- Composition in the λ -calculus:

$$M, N \Rightarrow \lambda x.M(Nx)$$

- ▶ Space measure: size of intermediate values.
- CbV is not space-efficient:

 $(\lambda x.M(Nx))V \to M(NV) \to^* MW \to^* Z$

Intermediate value W appears explicitly during the computation

- Ordinary evaluation mechanisms are inherently non-interactive.
- Composition in the λ -calculus:

$$M, N \Rightarrow \lambda x.M(Nx)$$

- ▶ Space measure: size of intermediate values.
- CbV is not space-efficient:

 $(\lambda x.M(Nx))V \to M(NV) \to^* MW \to^* Z$

Intermediate value W appears explicitly during the computation

- Ordinary evaluation mechanisms are inherently non-interactive.
- Composition in the λ -calculus:

$$M, N \Rightarrow \lambda x.M(Nx)$$

- ▶ Space measure: size of intermediate values.
- CbV is not space-efficient:

$$(\lambda x.M(Nx))V \to M(NV) \to^* MW \to^* Z$$

Intermediate value ${\cal W}$ appears explicitly during the computation

Main Ideas

- Keep the λ-calculus as the underlying programming language.
- Compiling every λ -term M to an equivalent, interactive, automaton which computes the GoI interpretation of M.
 - ▶ Not really a new idea [Mackie1994], [Pinto2001].
- ► Space consumption of a program can be **read off** from its type derivation.

▶ Interactive meaning of a type A:

$$A \Longrightarrow (A^-, A^+)$$

- A^- : questions for A;
- A^+ : answers for A.

• Interactive meaning of a program M:

$$M: A \to B$$
$$\Downarrow$$
$$[M]: A^+ + B^- \to A^- + B^+$$

▶ Interactive meaning of a type A:

$$A \Longrightarrow (A^-, A^+)$$

- A^- : questions for A;
- A^+ : answers for A.
- Interactive meaning of a program M:

$$M: A \rightarrow B$$
 \downarrow
 $M]: A^+ + B^- \rightarrow A^- + B$

▶ Interactive meaning of a type A:

$$A \Longrightarrow (A^-, A^+)$$

- A^- : questions for A;
- A^+ : answers for A.

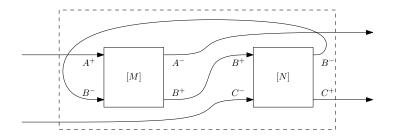
• Interactive meaning of a program M:

$$M: A \to B$$

$$\Downarrow$$

$$[M]: A^+ + B^- \to A^- + B^+$$

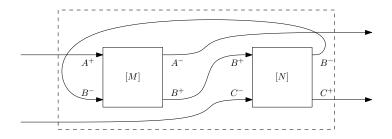
- ▶ Primitives (combinators): easy.
- Composition $(M : A \to B \text{ and } N : B \to C)$:



[M] is an automaton computing the interpretation of M.
[M] can be seen as a message passing network.

Compiling Into an Interactive Form

- ▶ Primitives (combinators): easy.
- Composition $(M : A \to B \text{ and } N : B \to C)$:



[M] is an automaton computing the interpretation of M.
[M] can be seen as a message passing network.

A Simple, First-Order, Functional Language O

▶ Finite Types:

$$A ::= \alpha \mid 1 \mid A + A \mid A \times A$$

Ordering on all types:

```
\min_A \mid \operatorname{succ}_A(M) \mid \operatorname{eq}_A(M, N)
```

► Loops:

 $\operatorname{loop}(c.M)(N)$

- ▶ CbV evaluation.
 - ▶ Harmless: this is the language in which we write automata.
- ► The **object** language.
- ▶ The space consumption of $t : A \to B$ is proportional to the "size" of its type.

Towards IntML

Syntactically:

▶ Enrich the language with higher-order types:

$$X::=[A]\mid X\otimes X\mid A\cdot X\multimap X$$

- A linear lambda calculus with pairs.
- ▶ Terms from O appears inlined, e.g. [M].
- ► All computation is done by **O**.

► Semantically:

- Take any model (e.g. the term model) \mathbb{O} of O .
- Apply the Int-construction [JSV96] to it, obtaining $Int(\mathbb{O})$.
- $Int(\mathbb{O})$ is a model of IntML "for free".

Towards IntML

Syntactically:

▶ Enrich the language with higher-order types:

$$X ::= [A] \mid X \otimes X \mid A \cdot X \multimap X$$

- A linear lambda calculus with pairs.
- ▶ Terms from O appears inlined, e.g. [M].
- ▶ All computation is done by **O**.

► Semantically:

- Take any model (e.g. the term model) \mathbb{O} of O .
- Apply the Int-construction [JSV96] to it, obtaining $Int(\mathbb{O})$.
- $Int(\mathbb{O})$ is a model of IntML "for free".

Why Sublinear Space?

Theorem

Any O term $M : A \to B$ can be evaluated on any input c : A in space proportional to |c|.

▶ Why sublinear, then?

▶ Interaction allows for an exponential improvement:

Strings $S_{\alpha} = [\alpha] \multimap [3]$ Graphs $G_{\alpha} = ([\alpha] \multimap [2]) \otimes ([\alpha \times \alpha] \multimap [2])$

Theorem

Any IntML term $t: S_{\alpha} \multimap S_{P(\alpha)}$ computes a logspace function.

▶ Also the converse holds:

Theorem

For every logspace function, there is an IntML term $M: S_{\alpha} \multimap S_{P(\alpha)}$ which computes it.

Why Sublinear Space?

Theorem

Any O term $M : A \to B$ can be evaluated on any input c : A in space proportional to |c|.

- ▶ Why sublinear, then?
- ▶ Interaction allows for an exponential improvement:

Strings
$$S_{\alpha} = [\alpha] \multimap [3]$$

Graphs $G_{\alpha} = ([\alpha] \multimap [2]) \otimes ([\alpha \times \alpha] \multimap [2])$

Theorem

Any IntML term $t: S_{\alpha} \multimap S_{P(\alpha)}$ computes a logspace function.

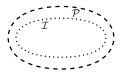
• Also the converse holds:

Theorem

For every logspace function, there is an IntML term $M: S_{\alpha} \multimap S_{P(\alpha)}$ which computes it.

A Third Application: ICC and Intensional Expressivity

► ICC systems can be seen as a programming languages guaranteeing quantitative properties of programs:



- Extensional completeness does not imply much in terms of intensional expressivity.
 - Can natural algorithms be written in \mathcal{I} ?
 - ▶ Is it possible to design an ICC system such that *I* is as close as possible to *P*?
 - ▶ For all "reasonable" complexity classes, \mathcal{P} is not even recursively enumerable...

ICC and Intensional Expressivity

$\forall \pi \in \mathcal{S} \qquad \mathbf{W}(\pi) \sim Complexity(\pi)$

ICC and Intensional Expressivity

$\forall M \in \mathcal{PCF}$ $\mathbf{W}(M) \sim Complexity(M)$

ICC and Intensional Expressivity

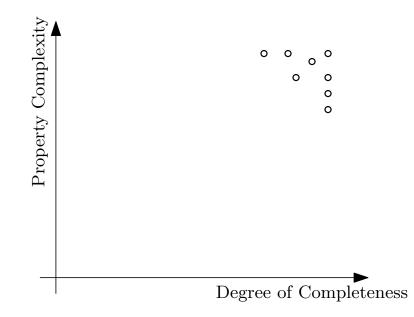
$\forall M \in \mathcal{PCF}$ $\mathbf{W}(M) \sim Complexity(M)$

- ▶ Idea: internalize the information provided by $\mathbf{W}(\cdot)$ into a type system $\mathcal{T}_{\mathbf{W}}$.
- $\mathbf{W}(\cdot)$ can be read from types. In other words:

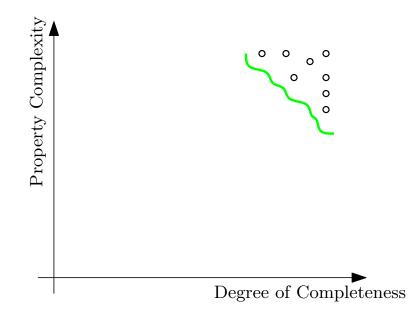
$$\vdash M : A \Leftrightarrow \mathbf{W}(A) = \mathbf{W}(M).$$

▶ There has to be a price to pay, however.

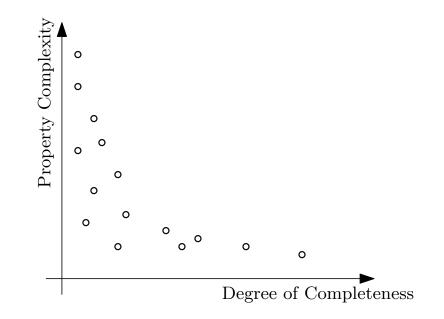
Program Logics



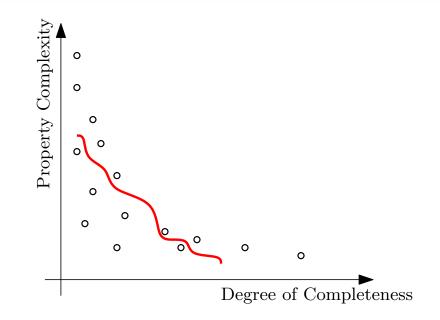
Program Logics



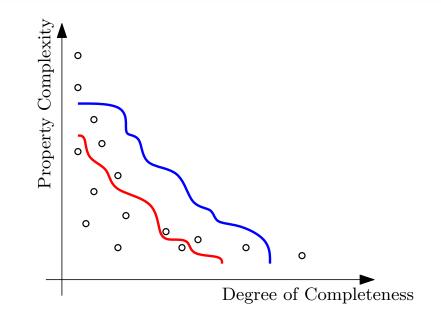
Type Systems



Type Systems



Type Systems



Some Examples

Simply Types

- "Well-typed programs do not go wrong".
- ▶ Type inference and type checking are often decidable.

Dependent Types

- ▶ Type checking is decidable.
- ▶ Interesting, extensional properties can be specified.

Intersection Types

- ▶ Sound and complete for termination.
- ▶ Type inference is not decidable.
- Studying programs as *functions* requires considering an infinite family of type derivations.

A Notable Exception: Bounded Linear Logic

- ▶ One of the earliest examples of a system capturing polynomial time **functions** [GSS1992].
 - Extensionally!
 - For every polytime function there is at least one proof in BLL computing it.

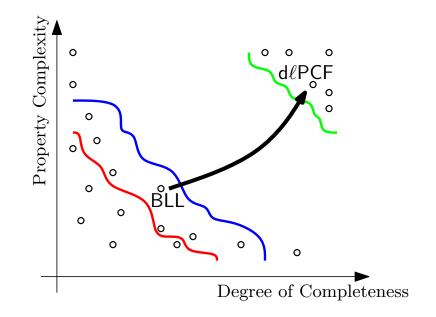
► Types:

$$A ::= \alpha(p_1, \dots, p_n) \mid A \otimes A \mid A \multimap A \mid \forall \alpha.A \mid !_{x < p}A$$

- ▶ How many "polytime proofs" does BLL capture?
 - ▶ There's evidence they are **many** [DLHofmann2010].
- ► Type checking can be **problematic**. As an example:

$$\frac{\Gamma, !_{x < p}A, !_{y < q}A\{p + y/x\} \vdash B \quad p + q \le r}{\Gamma, !_{x < r}A \vdash B} X$$

A Change in Perspective



$d\ell PCF$: a Bird's Eye View

- ► A type system for the lambda calculus with constants and full higher-order recursion. (i.e. PCF).
- Greatly inspired by BLL.
- \blacktriangleright Indices are not necessarily polynomials, but terms from a signature $\Sigma.$
 - Symbols in Σ are given a meaning by an equational program \mathcal{E} .
 - Side conditions in the form:

$$\phi; \Phi \models^{\mathcal{E}} \mathbf{I} \leq \mathbf{J}$$

▶ Types and modal types are defined as follows:

$$\begin{array}{ll} A,B::=\texttt{Nat}[\mathrm{I},\mathrm{J}] \mid F \multimap A & \text{basic types} \\ F,G::=[a < \mathrm{I}] \cdot A & \text{modal types} \end{array}$$

$d\ell PCF$: a Bird's Eye View

- ► A type system for the lambda calculus with constants and full higher-order recursion. (i.e. PCF).
- Greatly inspired by BLL.
- \blacktriangleright Indices are not necessarily polynomials, but terms from a signature $\Sigma.$
 - Symbols in Σ are given a meaning by an equational program \mathcal{E} .
 - Side conditions in the form:

$$\phi$$
; K₁ \leq H₁, ..., K_n \leq H_n $\models^{\mathcal{E}} I \leq$ J

▶ Types and modal types are defined as follows:

$$\begin{array}{ll} A,B::=\texttt{Nat}[\mathrm{I},\mathrm{J}] \mid F \multimap A & \text{basic types} \\ F,G::=[a<\mathrm{I}] \cdot A & \text{modal types} \end{array}$$

The Meaning of Types

$[a < \mathbf{I}] \cdot A \multimap B$

$(A\{0/a\} \otimes \ldots \otimes A\{I-1/a\}) \longrightarrow B$

The Meaning of Types

$$[a < \mathbf{I}] \cdot A \multimap B$$

$$\Downarrow$$

$$(A\{0/a\} \otimes \ldots \otimes A\{\mathbf{I} - 1/a\}) \multimap B$$

$a; \emptyset; \emptyset \vdash_{\mathrm{I}} M : [b < \mathrm{J}] \cdot \mathtt{Nat}[a] \multimap \mathtt{Nat}[\mathrm{K}]$

- ▶ *M* computes a function from natural numbers to natural numbers.
- Something **extensional**:
 - On input a natural number n, M returns a natural number $K\{n/a\}$.
- ► Something more **intensional**:
 - The cost of evaluation of M on an input n is $(I + J)\{n/a\}$.
- ► Two questions:
 - ▶ Is this correct?
 - How many programs can be captured this way?

$a; \emptyset; \emptyset \vdash_{\mathrm{I}} M : [b < \mathrm{J}] \cdot \mathtt{Nat}[a] \multimap \mathtt{Nat}[\mathrm{K}]$

- ▶ *M* computes a function from natural numbers to natural numbers.
- ► Something **extensional**:
 - On input a natural number n, M returns a natural number $K\{n/a\}$.
- ► Something more **intensional**:
 - The cost of evaluation of M on an input n is $(I + J)\{n/a\}$.
- ► Two questions:
 - ▶ Is this correct?
 - How many programs can be captured this way?

$$a; \emptyset; \emptyset \vdash_{\mathrm{I}} M : [b < \mathrm{J}] \cdot \mathtt{Nat}[a] \multimap \mathtt{Nat}[\mathrm{K}]$$

- ► *M* computes a function from natural numbers to natural numbers.
- Something extensional:
 - On input a natural number n, M returns a natural number $K\{n/a\}$.
- Something more **intensional**:
 - The cost of evaluation of M on an input n is $(I + J)\{n/a\}$.
- ► Two questions:
 - ▶ Is this correct?
 - ▶ How many programs can be captured this way?

$$a; \emptyset; \emptyset \vdash_{\mathrm{I}} M : [b < \mathrm{J}] \cdot \mathtt{Nat}[a] \multimap \mathtt{Nat}[\mathrm{K}]$$

- ► *M* computes a function from natural numbers to natural numbers.
- ► Something **extensional**:
 - On input a natural number n, M returns a natural number $K\{n/a\}$.
- Something more **intensional**:
 - The cost of evaluation of M on an input n is $(I + J)\{n/a\}$.
- ► Two questions:
 - ▶ Is this **correct**?
 - How many programs can be captured this way?

Soundness and Completeness

Theorem

Let $\emptyset; \emptyset; \emptyset \vdash_{\mathrm{I}} M : \mathrm{Nat}[\mathrm{J}, \mathrm{K}] \text{ and } M \Downarrow^{n} \underline{\mathrm{m}}.$ Then $n \leq |M| \cdot [\![\mathrm{I}]\!]_{\rho}^{\mathcal{E}}$

Theorem (Relative Completeness for Programs)

Let M be a PCF program such that $M \Downarrow^n \underline{\mathbb{m}}$. Then, there exist two index terms I and J such that $\llbracket I \rrbracket^{\mathcal{U}} \leq n$ and $\llbracket J \rrbracket^{\mathcal{U}} = m$ and such that the term M is typable in dlPCF as $\emptyset; \emptyset; \emptyset \vdash^{\mathcal{U}}_{1} M : \operatorname{Nat}[J].$

Theorem (Relative Completeness for Functions)

Suppose that M is a PCF term such that $\vdash M$: Nat \rightarrow Nat. Moreover, suppose that there are two (total and computable) functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that $M \underline{n} \downarrow^{g(n)} \underline{f}(\underline{n})$. Then there are terms I, J, K with $[I + J] \leq g$ and [K] = f, such that

 $a; \emptyset; \emptyset \vdash^{\mathcal{U}}_{\mathrm{I}} M : [b < \mathrm{J}] \cdot \mathrm{Nat}[a] \multimap \mathrm{Nat}[\mathrm{K}].$

Soundness and Completeness

Theorem

Let $\emptyset; \emptyset; \emptyset \vdash_{\mathrm{I}} M : \mathrm{Nat}[\mathrm{J}, \mathrm{K}] \text{ and } M \Downarrow^{n} \underline{\mathrm{m}}.$ Then $n \leq |M| \cdot [\![\mathrm{I}]\!]_{\rho}^{\mathcal{E}}$

Theorem (Relative Completeness for Programs)

Let M be a PCF program such that $M \Downarrow^n \underline{m}$. Then, there exist two index terms I and J such that $\llbracket I \rrbracket^{\mathcal{U}} \leq n$ and $\llbracket J \rrbracket^{\mathcal{U}} = m$ and such that the term M is typable in d ℓ PCF as $\emptyset; \emptyset; \emptyset \vdash^{\mathcal{U}}_{I} M : \operatorname{Nat}[J].$

Theorem (Relative Completeness for Functions)

Suppose that M is a PCF term such that $\vdash M$: Nat \rightarrow Nat. Moreover, suppose that there are two (total and computable) functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that $M \underline{n} \downarrow^{g(n)} \underline{f}(\underline{n})$. Then there are terms I, J, K with $[I + J] \leq g$ and [K] = f, such that

 $a; \emptyset; \emptyset \vdash^{\mathcal{U}}_{\mathrm{I}} M : [b < \mathrm{J}] \cdot \mathrm{Nat}[a] \multimap \mathrm{Nat}[\mathrm{K}].$

Soundness and Completeness

Theorem

Let $\emptyset; \emptyset; \emptyset \vdash_{\mathrm{I}} M : \mathrm{Nat}[\mathrm{J}, \mathrm{K}] \text{ and } M \Downarrow^{n} \underline{\mathrm{m}}.$ Then $n \leq |M| \cdot [\![\mathrm{I}]\!]_{\rho}^{\mathcal{E}}$

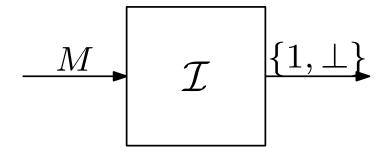
Theorem (Relative Completeness for Programs)

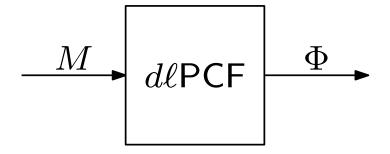
Let M be a PCF program such that $M \Downarrow^n \underline{m}$. Then, there exist two index terms I and J such that $\llbracket I \rrbracket^{\mathcal{U}} \leq n$ and $\llbracket J \rrbracket^{\mathcal{U}} = m$ and such that the term M is typable in d ℓ PCF as $\emptyset; \emptyset; \emptyset \vdash^{\mathcal{U}}_{I} M : \operatorname{Nat}[J].$

Theorem (Relative Completeness for Functions)

Suppose that M is a PCF term such that $\vdash M$: Nat \rightarrow Nat. Moreover, suppose that there are two (total and computable) functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that $M \underline{\mathbf{n}} \Downarrow^{g(n)} \underline{\mathbf{f}}(\underline{\mathbf{n}})$. Then there are terms I, J, K with $[[I + J]] \leq g$ and [[K]] = f, such that

 $a; \emptyset; \emptyset \vdash^{\mathcal{U}}_{\mathrm{I}} M : [b < \mathrm{J}] \cdot \operatorname{Nat}[a] \multimap \operatorname{Nat}[\mathrm{K}].$





Thank you!

Questions?