
Call-by-push-value:
the fine-grain structure

of call-by-value and call-by-name

Paul Blain Levy

University of Birmingham

February 20, 2012

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 1 / 31

Call-By-Push-Value

Call-by-push-value is a form of λ-calculus with computational effects.
The goal of this talk is to explain the sense in which call-by-push-value is a
direct description of the fine-grained structure of call-by-value and
call-by-name typed λ-calculus.

1 Pure λ-calculus

2 The Experiment

3 Call-By-Value

4 Call-By-Name

5 Analyzing The Data

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 2 / 31

Simply Typed λ-calculus

A pure functional language. The types are:

A ::= 0 | A+A | 1 | A×A | A→ A |
∑

i∈NAi |
∏
i∈NAi

βη-laws for all connectives, hence numerous type isomorphisms.

It has denotational semantics in any countably bicartesian closed category,
in particular Set.

CBV and CBN operational semantics give the same answer for a boolean
term `M : 1 + 1.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 3 / 31

Call-by-name definitional interpreter

In CBN the terminals are inl M, inr M,λx.M, . . .
To evaluate

λx.M : return λx.M .

inl M : return inl M .

match M as {inl x. N, inr x. N ′}: evaluate M . If it returns
inl P , evaluate N [P/x], but if it returns inr P , evaluate N ′[P/x].
MN : evaluate M . If it returns λx.P , evaluate P [N/x].

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 4 / 31

Call-by-value definitional interpeter

CBV terminals T ::= inl T | inr T | λx.M | · · ·
To evaluate

λx.M : return λx.M .

inl M : evaluate M . If it returns T , return inl T .

match M as {inl x. N, inr x. N ′}: evaluate M . If it returns
inl T , evaluate N [T/x], but if it returns inr T , evaluate N ′[T/x].
MN : evaluate M . If it returns λx.P , evaluate N . If that returns T ,
evaluate P [T/x].

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 5 / 31

Variants of Simply Typed λ-calculus

There are many variants, e.g.

we could include n-ary sum types +(A,B,C)
we could include n-ary function types (A,B,C)→ D

we could include either a pattern-match product A×B, or a
projection product A Π B, or both.

These variants are all equivalent, because of the type isomorphisms.
The largest of these variants is called jumbo λ-calculus.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 6 / 31

The Experiment

We add computational effects (aka imperative features, aka Moggi’s
notions of computation) to our pure language: errors, I/O, divergence,
nondeterminism, reading and assigning to memory cells, generating
memory cells, callcc.

E
def= {CRASH,BANG} A def= {a, b, c, d, e}

e ∈ E
Γ ` error e : B

Γ `M : B
c ∈ A

Γ ` print c. M : B

To evaluate error e To evaluate print c. M
halt with error message e print c and then evaluate M

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 7 / 31

CBV/CBN Exercises

1 Evaluate
(λx.(x + x))(print "hello". 4)

in CBV and CBN.

2 Evaluate

match (print "hello". inr error CRASH) as
{inl x. x + 1, inr y. 5}

in CBV and CBN.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 8 / 31

What happens?

In each of these effectful languages:

what equations survive as contextual equivalences?

what type isomorphisms survive?

can we give a denotational semantics?

Analyzing the denotational models for different effects,

what patterns do we see?

We could carry out this project for any version of the λ-calculus. By
choosing jumbo λ-calculus, we cover all possibilities.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 9 / 31

What happens?

In each of these effectful languages:

what equations survive as contextual equivalences?

what type isomorphisms survive?

can we give a denotational semantics?

Analyzing the denotational models for different effects,

what patterns do we see?

We could carry out this project for any version of the λ-calculus. By
choosing jumbo λ-calculus, we cover all possibilities.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 9 / 31

Equations and Isomorphisms

Assuming x 6∈ Γ.

Valid in CBV, but not in CBN

Γ, z : A+B `M = match z as

{
inl x. M [inl x/z]
inr x. M [inr x/z]

}
: C

(A+B) + C ∼= A+ (B + C)

Valid in CBN, but not in CBV

Γ `M = λx. (M x) : A→ B

(A Π B)→ C ∼= A→ (B → C)

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 10 / 31

Thunks in CBV

In call-by-value, the type ()→ A is often called a “thunk” type.

TA
def= ()→ A

thunk M
def= λ().M

force M
def= M ()

Thunks can be used to delay evaluation.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 11 / 31

CBV: Semantics In Outline

A term Γ `M : A denotes

[[M]] : [[Γ]] −→ [[A]] + E (errors)

[[M]] : S × [[Γ]] −→ S × [[A]] (state)

[[M]] : [[Γ]]× ([[A]]→ R) −→ R (continuations)

Why doesn’t Paul just say it’s the Kleisli category for the monad?

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 12 / 31

CBV: Semantics In Outline

A term Γ `M : A denotes

[[M]] : [[Γ]] −→ [[A]] + E (errors)

[[M]] : S × [[Γ]] −→ S × [[A]] (state)

[[M]] : [[Γ]]× ([[A]]→ R) −→ R (continuations)

Why doesn’t Paul just say it’s the Kleisli category for the monad?

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 12 / 31

CBV: Semantics of Values

Values are given by

V ::= x | inl V | inr V | λx.M | · · ·

A value denotes [[V]]val : [[Γ]] −→ [[A]]

Substitution lemma

We can obtain [[M [V/x]]] in terms of [[M]] and [[V]]val.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 13 / 31

Dynamically Generated, Globally Visible Cells (CSL ’02)

We have a poset of worlds W, saying what cells are generated.

Sm is the set of states in world m ∈ W.

A type denotes a functor W −→ Set.

[[A→ B]]m =
∏
n>m

(Sn→ [[A]]n→
∑
p>n

(Sp× [[B]]p))

A value Γ `v V : A denotes a natural transformation [[Γ]]
[[V]]val // [[A]] .

A term Γ `M : A denotes a function

Sm× [[Γ]]m
[[M]]m //

∑
n>m(Sn× [[A]]n) for all m ∈ N.

Thunking Matters

A term Γ `M : A corresponds to a value Γ ` V : TA.

But they’re not the same thing.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 14 / 31

Dynamically Generated, Globally Visible Cells (CSL ’02)

We have a poset of worlds W, saying what cells are generated.

Sm is the set of states in world m ∈ W.

A type denotes a functor W −→ Set.

[[A→ B]]m =
∏
n>m

(Sn→ [[A]]n→
∑
p>n

(Sp× [[B]]p))

A value Γ `v V : A denotes a natural transformation [[Γ]]
[[V]]val // [[A]] .

A term Γ `M : A denotes a function

Sm× [[Γ]]m
[[M]]m //

∑
n>m(Sn× [[A]]n) for all m ∈ N.

Thunking Matters

A term Γ `M : A corresponds to a value Γ ` V : TA.

But they’re not the same thing.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 14 / 31

CBV: spot the pattern

Semantics of inl M , for errors, state, control

[[inl M]]ρ = match[[M]]ρ as

{
inl x. inl inl x
inr e.inr e

[[inl M]](s, ρ) = match[[M]](s, ρ) as (s′, x). (s′,inl x)
[[inl M]](ρ, k) = [[M]](ρ, λx.k(inl x))

The red part represents sequencing.
The blue part represents returning a value.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 15 / 31

Fine-Grain Call-By-Value

Same types as before.

Judgements of Fine-Grain CBV

Values Γ `v V : A Computations Γ `c M : A.

Terms:

V ::= x | inl V | inr V | λx.M | · · ·
M ::= return V | M to x. N | V V | · · ·

Γ `v V : A

Γ `c return V : A

Γ `c M : A Γ, x : A `c N : B

Γ `c M to x. N : B

Closed distributive Freyd category (Power, Robinson, Thielecke).

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 16 / 31

Fine-grain call-by-value: definitional interpreter

Evaluates a closed computation to a closed value.

To evaluate

return V : return V .

M to x. N : evaluate M . If it returns V , then evaluate N [V/x].
(λx.M)V : evaluate M [V/x].
match inl V as {inl x. N, inr x. N ′}: evaluate N [V/x].

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 17 / 31

Complex values

Fine-grain CBV allows pattern-matching into computations.

match V as {inl x. M, inr x. M ′}

Why not allow pattern-matching into values?

match V as {inl x. W , inr x. W ′}

+ Present in all denotational models.

- Doesn’t appear in the semantics of CBV terms.

- Changes the operational character of the language:
values have to be evaluated.

- Doesn’t work well with recursive types.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 18 / 31

CBN, What Doesn’t Work (1): Semantics From CBV

The thunking transform CBN −→ CBV (Danvy and Hatcliff).

Arguments of functions and components of tuples get thunked.

It doesn’t preserve η-law for functions.

We obtain semantics for CBN not validating that η-law.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 19 / 31

CBN, What Doesn’t Work (2): Carrier Semantics

Frequently found in the semantics literature:

[[bool]] = TB
[[A+B]] = T ([[A]] + [[B]])

[[A→ B]] = [[A]]→ [[B]]

But we can’t interpret error or match.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 20 / 31

CBN Semantics With Algebras

A type denotes (not just a set but) an E-pointed set.
More generally, a T -algebra.

What’s a T -algebra?

a set X (the carrier)

a function TX
θ // X (the structure)

satisfying

X
ηX //

id !!CC
CC

CC
CC

TX

θ
��

T 2X
µXoo

Tθ
��

X TX
θ

oo

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 21 / 31

Semantics of CBN Types

[[bool]] = F T (1 + 1)
[[A+B]] = F T (UT [[A]] + UT [[B]])

[[A→ B]] = UT [[A]]→ [[B]]
[[A Π B]] = [[A]] Π [[B]]

where we write

F T for the free T -algebra

UT for the carrier

→ for the exponential algebra

Π for the product algebra.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 22 / 31

Algebra Semantics: A Panacea?

Algebra semantics works well for errors and I/O, where but is more
awkward for other effects. Have to prove soundness wrt operational
semantics.

O’Hearn semantics of state

Big-step evaluation s,M ⇓ s, T
A type denotes a set corresponding to configurations s,M .

Streicher-Reus semantics of control

CK-machine transition M,K M ′,K ′.
A type denotes a set corresponding to stacks K.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 23 / 31

Summary

We have a denotational semantics for all of our effects and have shown
correctness.

In algebra semantics,

a CBV type denotes a set

a CBN type denotes a T -algebra.

In semantics of dynamically generated, globally visible cells,

a CBV type denotes a functor W −→ Set

a CBN type denotes a functor Wop −→ Set.

CBV types and CBN types are fundamentally different things.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 24 / 31

Summary

We have a denotational semantics for all of our effects and have shown
correctness.

In algebra semantics,

a CBV type denotes a set

a CBN type denotes a T -algebra.

In semantics of dynamically generated, globally visible cells,

a CBV type denotes a functor W −→ Set

a CBN type denotes a functor Wop −→ Set.

CBV types and CBN types are fundamentally different things.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 24 / 31

Summary

We have a denotational semantics for all of our effects and have shown
correctness.

In algebra semantics,

a CBV type denotes a set

a CBN type denotes a T -algebra.

In semantics of dynamically generated, globally visible cells,

a CBV type denotes a functor W −→ Set

a CBN type denotes a functor Wop −→ Set.

CBV types and CBN types are fundamentally different things.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 24 / 31

Types: spot the pattern

CBN [[A+B]] [[A→ B]]
monad F T (UT [[A]] + UT [[B]]) UT [[A]]→[[B]]
state S×((S →[[A]]) + (S →[[B]])) (S →[[A]])→[[B]]
control (([[A]]→ R) + ([[B]]→ R))→ R ([[A]]→ R)×[[B]]

CBV [[A+B]] [[A→ B]]
monad [[A]] + [[B]] UT ([[A]]→F T [[B]])
state [[A]] + [[B]] S →([[A]]→(S×[[B]]))
control [[A]] + [[B]] ([[A]]×([[B]]→ R))→ R

We call these particles U , F , →, +.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 25 / 31

Summary: The Types of Call-By-Push-Value

value type A ::= UB | 1 | A×A | 0 | A+A |
∑

i∈NAi

computation type B ::= FA | A→ B | 1Π | B Π B |
∏
i∈NBi

As yet we do not know

what U and F mean computationally

why a function type is a “computation type”.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 26 / 31

Judgements: spot the pattern

Fine-Grain CBV [[x : A, y : B `v V : C]] [[x : A, y : B `c M : C]]
monad [[A]]× [[B]] −→ [[C]] [[A]]× [[B]] −→ UTF T [[C]]
state [[A]]× [[B]] −→ [[C]] S × [[A]]× [[B]] −→ S×[[C]]
control [[A]]× [[B]] −→ [[C]] [[A]]× [[B]]× ([[C]]→ R) −→ R

CBN [[x : A, y : B `M : C]]
monad UT [[A]]× UT [[B]] −→ UT [[C]]
state S × (S →[[A]])× (S →[[B]]) −→ [[C]]
control ([[A]]→ R)× ([[B]]→ R)× [[C]] −→ [[C]]

We obtain judgements for values Γ `v V : A
and for computations Γ `c M : B
where all identifiers in Γ have value type.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 27 / 31

Terms: spot the pattern

Fine-Grain CBV [[thunk M]] [[force V]]
monad [[M]] [[V]]
state ρ 7→ λs.[[M]](s, ρ) (s, ρ) 7→ ([[V]]ρ)s
control ρ 7→ λk.[[M]](ρ, k) (ρ, k) 7→ ([[V]]ρ)k

CBN [[MN]] [[x]]
monad ρ 7→ ([[M]]ρ)′([[N]]ρ) ρ 7→ ρ(x)
state (s, ρ) 7→ ([[M]](s, ρ))′(λs.[[N]](s, ρ)) (s, ρ) 7→ (ρ(x))s
control (ρ, k) 7→ [[M]](ρ, 〈λk. [[N]](ρ, k), k〉) (ρ, k) 7→ (ρ(x))k

We obtain particles thunk, force, return, sequencing, λ and application.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 28 / 31

Typing Rules for F and U

The type FA

A computation in FA returns a value in A.

Γ `v V : A

Γ `c return V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x. N : B

The type UB

A value in UB is a thunk of a computation in B.

Γ `c M : B

Γ `v thunk M : UB

Γ `v V : UB

Γ `c force V : B

The constructs thunk and force are inverse.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 29 / 31

Call-by-push-value definitional interpreter

The terminals are computations:

return V λx.M λ{i.Mi}i∈I

To evaluate

return V : return return V .

M to x. N : evaluate M . If it returns return V , then evaluate
N [V/x].
λx.N : return λx.N .

MV : evaluate M . If it returns λx.N , evaluate N [V/x].
λ{i.Ni}i∈I : return λ{i.Ni}i∈I .

Mı̂: evaluate M . If it returns λ{i.Ni}i∈I , evaluate Nı̂.

let V be x. M : evaluate M [V/x].
force thunk M : evaluate M .

match 〈̂ı, V 〉 as {〈i, x〉.Mi}i∈I : evaluate Mı̂[V/x].
match 〈V, V ′〉 as 〈x, y〉.M : evaluate M [V/x, V ′/y].

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 30 / 31

Call-by-push-value definitional interpreter

The terminals are computations:

return V λx.M λ{i.Mi}i∈I

To evaluate

return V : return return V .

M to x. N : evaluate M . If it returns return V , then evaluate
N [V/x].
λx.N : return λx.N .

MV : evaluate M . If it returns λx.N , evaluate N [V/x].
λ{i.Ni}i∈I : return λ{i.Ni}i∈I .

Mı̂: evaluate M . If it returns λ{i.Ni}i∈I , evaluate Nı̂.

let V be x. M : evaluate M [V/x].
force thunk M : evaluate M .

match 〈̂ı, V 〉 as {〈i, x〉.Mi}i∈I : evaluate Mı̂[V/x].
match 〈V, V ′〉 as 〈x, y〉.M : evaluate M [V/x, V ′/y].

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 30 / 31

Conclusions

There are many other calculi that contain call-by-name and call-by-value.

Effect-PCF (Filinski)

SFPL (Marz)

λµν⊥-calculus (Howard)

Various CPS calculi

Polarized Linear Logic (Laurent)

Polarized Intuitionistic Logic (Harper, Licata, Zeilberger)

Effect Calculus (Egger, Møgelberg, Simpson)

Call-by-push-value with complex values (Levy)

The distinctive feature of call-by-push-value is that it consists precisely of
the particles that make up call-by-value and call-by-name.

Paul Blain Levy (University of Birmingham) Call-by-push-value February 20, 2012 31 / 31

	Pure -calculus
	The Experiment
	Call-By-Value
	Call-By-Name
	Analyzing The Data

